Publications

2010

Tran, Thien, and Ronald Kahn. (2010) 2010. “Transplantation of Adipose Tissue and Stem Cells: Role in Metabolism and Disease”. Nat Rev Endocrinol 6 (4): 195-213. https://doi.org/10.1038/nrendo.2010.20.
Humans and other mammals have three main adipose tissue depots: visceral white adipose tissue, subcutaneous white adipose tissue and brown adipose tissue, each of which possesses unique cell-autonomous properties. In contrast to visceral adipose tissue, which can induce detrimental metabolic effects, subcutaneous white adipose tissue and brown adipose tissue have the potential to benefit metabolism by improving glucose homeostasis and increasing energy consumption. In addition, adipose tissue contains adipose-derived stem cells, which possess the ability to differentiate into multiple lineages, a property that might be of value for the repair or replacement of various damaged cell types. Adipose tissue transplantation has primarily been used as a tool to study physiology and for human reconstructive surgery. Transplantation of adipose tissue is, however, now being explored as a possible tool to promote the beneficial metabolic effects of subcutaneous white adipose tissue and brown adipose tissue, as well as adipose-derived stem cells. Ultimately, the clinical applicability of adipose tissue transplantation for the treatment of obesity and metabolic disorders will reside in the achievable level of safety, reliability and efficacy compared with other treatments.
Bouche, Clara, Ximena Lopez, Amy Fleischman, Aaron Cypess, Sheila O’Shea, Darko Stefanovski, Richard Bergman, et al. 2010. “Insulin Enhances Glucose-Stimulated Insulin Secretion in Healthy Humans”. Proc Natl Acad Sci U S A 107 (10): 4770-5. https://doi.org/10.1073/pnas.1000002107.
Islet beta-cells express both insulin receptors and insulin-signaling proteins. Recent evidence from rodents in vivo and from islets isolated from rodents or humans suggests that the insulin signaling pathway is physiologically important for glucose sensing. We evaluated whether insulin regulates beta-cell function in healthy humans in vivo. Glucose-induced insulin secretion was assessed in healthy humans following 4-h saline (low insulin/sham clamp) or isoglycemic-hyperinsulinemic (high insulin) clamps using B28-Asp insulin that could be immunologically distinguished from endogenous insulin. Insulin and C-peptide clearance were evaluated to understand the impact of hyperinsulinemia on estimates of beta-cell function. Preexposure to exogenous insulin increased the endogenous insulin secretory response to glucose by approximately 40%. C-peptide response also increased, although not to the level predicted by insulin. Insulin clearance was not saturated at hyperinsulinemia, but metabolic clearance of C-peptide, assessed by infusion of stable isotope-labeled C-peptide, increased modestly during hyperinsulinemic clamp. These studies demonstrate that insulin potentiates glucose-stimulated insulin secretion in vivo in healthy humans. In addition, hyperinsulinemia increases C-peptide clearance, which may lead to modest underestimation of beta-cell secretory response when using these methods during prolonged dynamic testing.
Cypess, Aaron, and Ronald Kahn. (2010) 2010. “Brown Fat As a Therapy for Obesity and Diabetes”. Curr Opin Endocrinol Diabetes Obes 17 (2): 143-9. https://doi.org/10.1097/MED.0b013e328337a81f.
PURPOSE OF REVIEW: Human fat consists of white and brown adipose tissue (WAT and BAT). Though most fat is energy-storing WAT, the thermogenic capacity of even small amounts of BAT makes it an attractive therapeutic target for inducing weight loss through energy expenditure. This review evaluates the recent discoveries regarding the identification of functional BAT in adult humans and its potential as a therapy for obesity and diabetes. RECENT FINDINGS: Over the past year, several independent research teams used a combination of positron-emission tomography and computed tomography (PET/CT) imaging, immunohistochemistry, and gene and protein expression assays to prove conclusively that adult humans have functional BAT. This has occurred against a backdrop of basic studies defining the origins of BAT, new components of its transcriptional regulation, and the role of hormones in stimulation of BAT growth and differentiation. SUMMARY: Adult humans have functional BAT, a new target for antiobesity and antidiabetes therapies focusing on increasing energy expenditure. Future studies will refine the methodologies used to measure BAT mass and activity, expand our knowledge of critical-control points in BAT regulation, and focus on testing pharmacological agents that increase BAT thermogenesis and help achieve long-lasting weight loss and an improved metabolic profile.
Yamamoto, Yuji, Stephane Gesta, Kevin Lee, Thien Tran, Parshin Saadatirad, and Ronald Kahn. (2010) 2010. “Adipose Depots Possess Unique Developmental Gene Signatures”. Obesity (Silver Spring) 18 (5): 872-78. https://doi.org/10.1038/oby.2009.512.
We have previously demonstrated that subcutaneous and intra-abdominal adipose tissue show different patterns of expression for developmental genes (Shox2, En1, Tbx15 Hoxa5, Hoxc8, and Hoxc9), and that the expression level of Tbx15 and Hoxa5 in humans correlated with the level of obesity and fat distribution. To further explore the role of these developmental genes in adipose tissue, we have characterized their expression in different adipose depots in mice, and studied their regulation in obesity and by fasting. Developmental and adipogenic gene expression was compared in two subcutaneous and three intra-abdominal white adipose tissue (WAT) depots as well as brown adipose tissue (BAT) from lean or obese mice in a fed or fasting state. Each of these six adipose depots display a unique pattern of developmental gene expression, whereas expression of adipogenic transcription factors PPARgamma2 C/EBPalpha, beta, and Delta showed constant expression levels in all depots. Expression levels of developmental genes were similar in obese (ob/ob and high-fat diet (HFD)) and lean mice in most depots. Fasting systematically decreased expression of Hoxc8, PPARgamma2, and increased C/EBPDelta in both lean and ob/ob mice, but produced only variable changes in the expression of other developmental and adipogenic genes. These data indicate that each fat depot has a unique developmental gene expression signature, which is largely independent of nutritional state. This finding further supports a fundamental role of developmental genes in fat distribution and the development and/or function of specific adipose tissue depots.
DiVall, Sara, Tameeka Williams, Sarah Carver, Linda Koch, Jens Brüning, Ronald Kahn, Fredric Wondisford, Sally Radovick, and Andrew Wolfe. (2010) 2010. “Divergent Roles of Growth Factors in the GnRH Regulation of Puberty in Mice”. J Clin Invest 120 (8): 2900-9. https://doi.org/10.1172/JCI41069.
Pubertal onset, initiated by pulsatile gonadotropin-releasing hormone (GnRH), only occurs in a favorable, anabolic hormonal milieu. Anabolic factors that may signal nutritional status to the hypothalamus include the growth factors insulin and IGF-1. It is unclear which hypothalamic neuronal subpopulation these factors affect to ultimately regulate GnRH neuron function in puberty and reproduction. We examined the direct role of the GnRH neuron in growth factor regulation of reproduction using the Cre/lox system. Mice with the IR or IGF-1R deleted specifically in GnRH neurons were generated. Male and female mice with the IR deleted in GnRH neurons displayed normal pubertal timing and fertility, but male and female mice with the IGF-1R deleted in GnRH neurons experienced delayed pubertal development with normal fertility. With IGF-1 administration, puberty was advanced in control females, but not in females with the IGF-1R deleted in GnRH neurons, in control males, or in knockout males. These mice exhibited developmental differences in GnRH neuronal morphology but normal number and distribution of neurons. These studies define the role of IGF-1R signaling in the coordination of somatic development with reproductive maturation and provide insight into the mechanisms regulating pubertal timing in anabolic states.
Kaneko, Kazuma, Kohjiro Ueki, Noriko Takahashi, Shinji Hashimoto, Masayuki Okamoto, Motoharu Awazawa, Yukiko Okazaki, et al. 2010. “Class IA Phosphatidylinositol 3-Kinase in Pancreatic β Cells Controls Insulin Secretion by Multiple Mechanisms”. Cell Metab 12 (6): 619-32. https://doi.org/10.1016/j.cmet.2010.11.005.
Type 2 diabetes is characterized by insulin resistance and pancreatic β cell dysfunction, the latter possibly caused by a defect in insulin signaling in β cells. Inhibition of class IA phosphatidylinositol 3-kinase (PI3K), using a mouse model lacking the pik3r1 gene specifically in β cells and the pik3r2 gene systemically (βDKO mouse), results in glucose intolerance and reduced insulin secretion in response to glucose. β cells of βDKO mice had defective exocytosis machinery due to decreased expression of soluble N-ethylmaleimide attachment protein receptor (SNARE) complex proteins and loss of cell-cell synchronization in terms of Ca(2+) influx. These defects were normalized by expression of a constitutively active form of Akt in the islets of βDKO mice, preserving insulin secretion in response to glucose. The class IA PI3K pathway in β cells in vivo is important in the regulation of insulin secretion and may be a therapeutic target for type 2 diabetes.
Suzuki, Ryo, Kevin Lee, Enxuan Jing, Sudha Biddinger, Jeffrey McDonald, Thomas Montine, Suzanne Craft, and Ronald Kahn. 2010. “Diabetes and Insulin in Regulation of Brain Cholesterol Metabolism”. Cell Metab 12 (6): 567-79. https://doi.org/10.1016/j.cmet.2010.11.006.
The brain is the most cholesterol-rich organ in the body, most of which comes from in situ synthesis. Here we demonstrate that in insulin-deficient diabetic mice, there is a reduction in expression of the major transcriptional regulator of cholesterol metabolism, SREBP-2, and its downstream genes in the hypothalamus and other areas of the brain, leading to a reduction in brain cholesterol synthesis and synaptosomal cholesterol content. These changes are due, at least in part, to direct effects of insulin to regulate these genes in neurons and glial cells and can be corrected by intracerebroventricular injections of insulin. Knockdown of SREBP-2 in cultured neurons causes a decrease in markers of synapse formation and reduction of SREBP-2 in the hypothalamus of mice using shRNA results in increased feeding and weight gain. Thus, insulin and diabetes can alter brain cholesterol metabolism, and this may play an important role in the neurologic and metabolic dysfunction observed in diabetes and other disease states.
Welsh, Gavin, Lorna Hale, Vera Eremina, Marie Jeansson, Yoshiro Maezawa, Rachel Lennon, Deborah Pons, et al. 2010. “Insulin Signaling to the Glomerular Podocyte Is Critical for Normal Kidney Function”. Cell Metab 12 (4): 329-40. https://doi.org/10.1016/j.cmet.2010.08.015.
Diabetic nephropathy (DN) is the leading cause of renal failure in the world. It is characterized by albuminuria and abnormal glomerular function and is considered a hyperglycemic "microvascular" complication of diabetes, implying a primary defect in the endothelium. However, we have previously shown that human podocytes have robust responses to insulin. To determine whether insulin signaling in podocytes affects glomerular function in vivo, we generated mice with specific deletion of the insulin receptor from their podocytes. These animals develop significant albuminuria together with histological features that recapitulate DN, but in a normoglycemic environment. Examination of "normal" insulin-responsive podocytes in vivo and in vitro demonstrates that insulin signals through the MAPK and PI3K pathways via the insulin receptor and directly remodels the actin cytoskeleton of this cell. Collectively, this work reveals the critical importance of podocyte insulin sensitivity for kidney function.
Boucher, Jeremie, Yazmin Macotela, Olivier Bezy, Marcelo Mori, Kristina Kriauciunas, and Ronald Kahn. 2010. “A Kinase-Independent Role for Unoccupied Insulin and IGF-1 Receptors in the Control of Apoptosis”. Sci Signal 3 (151): ra87. https://doi.org/10.1126/scisignal.2001173.
Insulin and insulin-like growth factor 1 (IGF-1) act as antiapoptotic hormones. We found that, unexpectedly, double-knockout (DKO) cells that lacked both insulin and IGF-1 receptors (IR and IGF1R, respectively) were resistant to apoptosis induced through either the intrinsic or the extrinsic pathway. This resistance to apoptosis was associated with decreased abundance of the proapoptotic protein Bax and increases in abundance of the antiapoptotic proteins Bcl-2, Bcl-xL, XIAP, and Flip. These changes in protein abundance involved primarily posttranscriptional mechanisms. Restoration of IR or IGF1R to DKO cells also restored their sensitivity to apoptosis. Notably, expression of a catalytically inactive mutant form of the IR also restored susceptibility to apoptosis. Thus, IR and IGF1R have bidirectional roles in the control of cell survival and can be viewed as dependence receptors. Insulin and IGF-1 binding stimulates receptor tyrosine kinase activity and blocks apoptosis, whereas unliganded IR and IGF1R, acting through a mechanism independent of their catalytic activity, exert a permissive effect on cell death.