Publications by Year: 1993

1993

Goncalves, Yamada, Thatte, Backer, Golan, Kahn, and Shoelson. 1993. “Optimizing Transmembrane Domain Helicity Accelerates Insulin Receptor Internalization and Lateral Mobility”. Proc Natl Acad Sci U S A 90 (12): 5762-6.
Transmembrane (TM) domains of integral membrane proteins are generally thought to be helical. However, a Gly-Pro sequence within the TM domain of the insulin receptor is predicted to act as a helix breaker. CD analyses of model TM peptides in a lipid-like environment show that substitution of Gly and Pro by Ala enhances helicity. On this basis, Gly933 and Pro934 within the TM domain of the intact human insulin receptor were mutated to Ala (G-->A, P-->A, GP-->AA) to assess effects of altered helicity on receptor functions. Mutated and wild-type receptors, expressed stably in cultured CHO cells at equivalent levels, were properly assembled, biosynthetically processed, and exhibited similar affinities for insulin. Receptor autophosphorylation and substrate kinase activity in intact cells and soluble receptor preparations were indistinguishable. In contrast, insulin-stimulated receptor internalization was accelerated 2-fold for the GP-->AA mutant, compared to a wild-type control or the G-->A and P-->A mutants. Insulin degradation, which occurs during receptor endocytosis and recycling, was similarly elevated in cells transfected with GP-->AA mutant receptors. Fluorescence photobleaching recovery measurements showed that the lateral mobility of GP-->AA mutant receptors was also increased 2- to 3-fold. These results suggest that lateral mobility directly influences rates of insulin-mediated receptor endocytosis and that rates of endocytosis and lateral mobility are retarded by a kinked TM domain in the wild-type receptor. Invariance of Gly-Pro within insulin receptor TM domain sequences suggests a physiologic advantage for submaximal rates of receptor internalization.
Kahn, and Folli. (1993) 1993. “Molecular Determinants of Insulin Action”. Horm Res 39 Suppl 3: 93-101. https://doi.org/10.1159/000182793.
Insulin rapidly stimulates tyrosine phosphorylation of a 185-kDa protein in most cell types. This protein, insulin receptor substrate 1 (IRS-1), has been implicated as the first postreceptor step in insulin signal transmission based on studies with insulin receptor mutants. In cell culture and in vitro, phosphorylated IRS-1 associates with the lipid-metabolizing enzyme phosphatidylinositol 3-kinase (PI 3-kinase), resulting in activation of this enzyme. Thus, the insulin receptor, IRS-1 and PI-3 kinase represent three of the earliest steps in insulin action at the cellular level. We have recently demonstrated that insulin is capable of stimulating PI 3-kinase activity in liver and muscle in vivo in animals and that IRS-1 phosphorylation may play a significant role in the association/activation with PI 3-kinase in vivo.
Csermely, Kajtár, Hollósi, Jalsovszky, Holly, Kahn, Gergely, Söti, Mihály, and Somogyi. 1993. “ATP Induces a Conformational Change of the 90-KDa Heat Shock Protein (hsp90)”. J Biol Chem 268 (3): 1901-7.
The 90-kDa heat shock protein (hsp90) is a well conserved, abundant cytosolic protein believed to be a "chaperone" of most steroid receptors. We have recently demonstrated that hsp90 has an ATP-binding site and autophosphorylating activity (Csermely, P., and Kahn, C. R. (1991) J. Biol. Chem. 266, 4943-4950). Circular dichroism analysis of highly purified hsp90 from rat liver shows that ATP induces an increase of beta-pleated sheet content of hsp90. Vanadate, molybdate, and heat treatment at 56 degrees C induce a similar change in the circular dichroism spectrum. Fourier transformed infrared spectroscopy reveals an ATP-induced increase in the interchain interactions of the 90-kDa heat shock protein due to an increase in its beta-pleated sheet content. In further studies we found that ATP: 1) decreases the tryptophan fluorescence of hsp90 by 11.6 +/- 1.9%; 2) increases the hydrophobic character of the protein as determined by its distribution between an aqueous phase and phenyl-Sepharose; and 3) renders hsp90 less susceptible to tryptic digestion. Our results suggest that hsp90 undergoes an "open-->closed" conformational change after the addition of ATP, analogous in many respects to the similar changes of the DnaK protein, the immunoglobulin heavy chain binding protein (BiP/GRP78), and hsp70. The ATP-induced conformational change of hsp90 may be important in regulating its association with steroid receptors and other cellular proteins.
Kriauciunas, Goldstein, Lipes, and Kahn. (1993) 1993. “Modulation of Expression of Insulin and IGF-I Receptor by Epstein-Barr Virus and Its Gene Products LMP and EBNA-2 in Lymphocyte Cell Lines”. J Cell Physiol 154 (3): 486-95. https://doi.org/10.1002/jcp.1041540306.
The receptors for insulin and insulin-like growth factor I (IGF-I) are two closely related integral membrane glycoproteins involved in signalling of cell growth and metabolism. We have used the unique paradigm of pairs of Burkitt lymphoma cell lines (BLO2, BL30, BL41) with or without Epstein-Barr Virus (EBV) infection and cells transfected with EBV-related genes to examine effects of EBV on expression of these receptors at the gene and protein functional level. In BL30 and BL41 cells, EBV infection increased surface insulin binding and total receptor number by 2- and 18-fold, respectively. By contrast, EBV infection decreased total IGF-I receptors by 29 to 87% in all three cell lines. In general, there was a correlation between total receptor concentration and the level of insulin or IGF-I receptor mRNAs, although in one cell line insulin binding increased while receptor mRNA levels decreased slightly, suggesting posttranslational effects. BL41 cells transfected with a vector expressing the EBV latent membrane protein (LMP) exhibited a 2.6- to 3.2-fold increase in insulin receptor expression, whereas cells transfected with EBNA-2 (one of the EBV nuclear antigens) alone exhibited no effect. However, EBNA-2 appears to be required for the EBV effect on insulin receptor expression since cells infected with a mutant virus, P3JHRI, which lacks the EBNA-2 gene failed to show an increase in insulin receptor number. These data indicate that EBV infection of lymphocytes increases expression of insulin receptors while simultaneously decreasing expression of IGF-I receptors. The magnitude and sometimes even the direction of change, depends on host cell factors. A maximal increase in insulin receptors appears to require the coordinate action of several of the EBV proteins including LMP and EBNA-2.
Kahn, and AB Goldfine. 1993. “Molecular Determinants of Insulin Action”. J Diabetes Complications 7 (2): 92-105.
Insulin elicits an array of biologic responses. Insulin exerts a regulatory role in almost all cells of the body and is the primary hormone responsible for signaling the storage and utilization of basic nutrients. On the molecular level, the actions of insulin are initiated by binding of insulin to the insulin receptor. Interaction of the alpha and beta subunits of the receptor results in tyrosine kinase activity, which is integral to the initiation of cascades of phosphorylation/dephosphorylation reactions that mediate a large number of the actions of insulin. Insulin-receptor substrate 1 may be central to phosphorylation reactions through a role in serine and threonine kinase activity. Insulin action may also involve the generation of low-molecular-weight mediators capable of modulating intracellular enzymes. The regulation of glucose transport is a primary feature of the physiologic role of insulin and is performed by a family of glucose-transporter proteins with different characteristics. One mechanism by which insulin exerts its effect on glucose transport is the stimulation of the translocation of the glucose transporter to the plasma membrane. Degradation of insulin occurs through diverse mechanisms at numerous sites in the body. Reversal of the insulin signal at the cellular level may be accomplished by a class of enzymes termed phosphotyrosine phosphatases, which may play a role in certain pathophysiologic states. Important roles for insulin-receptor kinase, glucose transporters, insulin-receptor substrate 1, and various intracellular enzymes in the actions of insulin have been demonstrated; nonetheless, the formulation of potential therapeutic strategies directed at particular stages of the insulin action cascade will require further elucidation of its components.
Csermely, Schnaider, Cheatham, Olson, and Kahn. 1993. “Insulin Induces the Phosphorylation of Nucleolin. A Possible Mechanism of Insulin-Induced RNA Efflux from Nuclei”. J Biol Chem 268 (13): 9747-52.
Insulin induces the serine phosphorylation of the nucleolar protein nucleolin at subnanomolar concentrations in differentiated 3T3-442A cells. The stimulation is biphasic with phosphorylation reaching a maximum at 10 pM insulin and then declining to only 40% of basal levels at insulin concentrations of 1 microM. These changes are rapid, reaching half-maximal after 4 min and maximal after 15 min of incubation. The cell-permeable casein kinase II inhibitor 5,6-dichlorobenzimidazole-riboside prevents the insulin-stimulated phosphorylation of nucleolin suggesting that casein kinase II may mediate this effect of the hormone. Insulin-like growth factor 1 mimics the action of insulin on dephosphorylation of nucleolin at nanomolar concentrations suggesting that the latter effect may be mediated by insulin-like growth factor 1 receptors. Insulin treatment of 3T3-442A cells also results in a stimulation of RNA efflux from isolated, intact cell nuclei. The dose dependence of insulin-induced nucleolin phosphorylation and insulin-stimulated RNA efflux from intact cell nuclei are almost identical. Insulin induces an increase in the RNA efflux at subnanomolar concentrations in 3T3-442A adipocytes, while high (micromolar) concentrations of insulin inhibited the efflux of RNA. These data indicate that insulin regulates the phosphorylation/dephosphorylation of nucleolin, possibly via stimulation of casein kinase II, and this may play a role in regulation of the RNA efflux from nuclei.
Feener, Backer, King, Wilden, Sun, Kahn, and White. 1993. “Insulin Stimulates Serine and Tyrosine Phosphorylation in the Juxtamembrane Region of the Insulin Receptor”. J Biol Chem 268 (15): 11256-64.
Insulin-stimulated autophosphorylation of the cytoplasmic juxtamembrane region of the human insulin receptor was examined by Tricine/SDS-PAGE. Various mutant receptor molecules were used to identify two tryptic phosphopeptides associated with the juxtamembrane region which accounts for 15% of the autophosphorylation of partially purified insulin receptor. These phosphopeptides were immunoprecipitated with an antipeptide antibody against the juxtamembrane sequence and were phosphorylated exclusively on tyrosine. Substitution of both Tyr960 and Tyr953 with alanine eliminated insulin-stimulated phosphorylation of the juxtamembrane region without affecting tyrosine autophosphorylation in the C terminus or regulatory regions. Monosubstitution of Tyr960 with phenylalanine or alanine reduced phosphorylation in the juxtamembrane region by more than 50%, and manual Edman degradation indicated that Tyr960 was phosphorylated in wild-type receptor. In vivo, phosphorylation of the juxtamembrane region accounts for one-third of the insulin receptor phosphorylation and contains both phosphoserine and phosphotyrosine. Deletion of Tyr960 and 11 adjacent amino acids eliminated insulin-stimulated phosphorylation of the juxtamembrane region. Substitution of Tyr960 reduced this phosphorylation by more than 50%. The insulin receptor also undergoes serine phosphorylation outside of the juxtamembrane region which depends on the presence of Tyr1151. Together with our previous studies, this report suggests that phosphorylation of Tyr960 may play an important role in signal transduction by the insulin receptor.
Chuang, Myers, Seidner, Birnbaum, White, and Kahn. 1993. “Insulin Receptor Substrate 1 Mediates Insulin and Insulin-Like Growth Factor I-Stimulated Maturation of Xenopus Oocytes”. Proc Natl Acad Sci U S A 90 (11): 5172-5.
Insulin and insulin-like growth factor I (IGF-I) initiate cellular functions by activating their homologous tyrosine kinase receptors. In most mammalian cell types, this results in rapid tyrosine phosphorylation of a high-molecular-weight substrate termed insulin receptor substrate 1 (IRS-1). Previous studies suggest that IRS-1 may act as a "docking" protein that noncovalently associates with certain signal-transducing molecules containing src homology 2 domains; however, direct evidence for the role of IRS-1 in the final biological actions of these hormones is still lacking. We have developed a reconstitution system to study the role of IRS-1 in insulin and IGF-I signaling, taking advantage of the fact that Xenopus oocytes possess endogenous IGF-I receptors but have little or no IRS-1, as determined by immunoblotting with anti-IRS-1 and antiphosphotyrosine antibodies. After microinjection of IRS-1 protein produced in a baculovirus expression system, tyrosyl phosphorylation of injected IRS-1 is stimulated by both insulin and IGF-I in a concentration-dependent manner, with IGF-I more potent than insulin. Furthermore, after IRS-1 injection, both hormones induce a maturation response that correlates well with the amount of injected IRS-1. By contrast, overexpression of human insulin receptors in the Xenopus oocytes does not enhance either IRS-1 phosphorylation or oocyte maturation response upon insulin stimulation. These results demonstrate that IRS-1 serves a critical role in linking IGF-I and insulin to their final cellular responses.
Reynet, and Kahn. 1993. “Rad: a Member of the Ras Family Overexpressed in Muscle of Type II Diabetic Humans”. Science 262 (5138): 1441-4.
To identify the gene or genes associated with insulin resistance in Type II (non-insulin-dependent) diabetes mellitus, subtraction libraries were prepared from skeletal muscle of normal and diabetic humans and screened with subtracted probes. Only one clone out of 4000 was selectively overexpressed in Type II diabetic muscle as compared to muscle of non-diabetic or Type I diabetic individuals. This clone encoded a new 29-kilodalton member of the Ras-guanosine triphosphatase superfamily and was termed Rad (Ras associated with diabetes). Messenger ribonucleic acid of Rad was expressed primarily in skeletal and cardiac muscle and was increased an average of 8.6-fold in the muscle of Type II diabetics as compared to normal individuals.