Publications by Year: 1989

1989

Goldstein, and Kahn. 1989. “Analysis of mRNA heterogeneity by ribonuclease H mapping: application to the insulin receptor”. Biochem Biophys Res Commun 159 (2): 664-9.
The major species of human insulin receptor mRNA (5.9, 7.5, 8.5 and 10.2 kb) and those in rat tissues (7.4 and 9.6 kb) are each much larger than the 4.2 kb required to encode the insulin receptor precursor. To evaluate the structural basis for this mRNA size heterogeneity, we performed a ribonuclease H mapping technique. A small insulin receptor cDNA insert was annealed to human and rat poly(A) RNA, followed by site-specific enzymatic cleavage with ribonuclease H. Subsequent Northern blot analysis with cDNA probes specific to the 5' end of the cDNA revealed a single fragment from each of the human and rat insulin receptor mRNA species. The size of this fragment indicated that each mRNA contains approximately 0.4 kb of 5' untranslated mRNA. In contrast, a 3' region probe demonstrated multiple mRNA fragments after cleavage. The sizes of these fragments indicated that the human insulin receptor mRNA species contain from 1.5 to 5.4 kb, and the rat insulin receptor mRNAs either 2.8 or 5.3 kb, of 3' untranslated RNA. Thus, the presence of varied, but extensive, 3' untranslated sequences in insulin receptor mRNA transcripts accounts for their size heterogeneity and may affect mRNA stability and/or translation efficiency.
The biological function of the connecting peptide (C-peptide) of proinsulin is unknown. Comparison of all known C-peptide sequences reveals the presence of a highly conserved peptide sequence, Glu/Asp-X-Glu/Asp (X being a hydrophobic amino acid), adjacent to the Arg-Arg doublet at the B chain/C-peptide junction. Furthermore, the next amino acid in the C-peptide sequence is also acidic in many animal species. To test the possible involvement of this hydrophilic domain in insulin biosynthesis, we constructed a mutant of the rat proinsulin II gene lacking the first four amino acids of the C-peptide and expressed either the normal (INS) on the mutated (INSDEL) genes in the AtT20 pituitary corticotroph cell line. In both cases immunoreactive insulin (IRI) was stored by the cells and released upon stimulation by cAMP. In the INS expressing cells, the majority of IRI, whether stored or released in response to a secretagogue, was mature insulin. By contrast, most of the stored and releasable IRI in the INSDEL expressing cells appeared to be (mutant) proinsulin or conversion intermediate with little detectable native insulin. Release of the mutant proinsulin and/or conversion intermediates was stimulated by cAMP. These results suggest that the mutant proinsulin was appropriately targeted to secretory granules and released predominantly via the regulated pathway, but that the C-peptide deletion prevented its conversion to native insulin.
Goldstein, and Kahn. (1989) 1989. “Insulin receptor messenger ribonucleic acid sequence alterations detected by ribonuclease cleavage in patients with syndromes of insulin resistance”. J Clin Endocrinol Metab 69 (1): 15-24. https://doi.org/10.1210/jcem-69-1-15.
We used a ribonuclease cleavage assay to screen for insulin receptor mRNA sequence alterations in 12 patients with syndromes of severe insulin resistance. Uniformly labeled [32P]antisense RNA probes complementary to insulin receptor mRNA were prepared by an SP6 or T7 RNA polymerase transcription reaction. Four probes ranging in size from 670-1470 bases were used to examine the entire 4.2-kilobase receptor protein-coding region. Patient RNA samples were hybridized to individual probes in solution, and mismatched sequences were detected by susceptibility to cleavage by a mixture of RNAses A and T1. The method was validated with insulin receptor mRNAs from cells transfected with cDNA constructs bearing known point and deletion mutations. Alterations in the insulin receptor mRNA sequence of two patients were detected. A patient with the type A syndrome of severe insulin resistance (A2-Boston) had a mutation in the insulin receptor beta-subunit mRNA sequence that localized to the region coding for amino acid residues 1174-1211 near the tyrosine kinase domain. The second alteration was a sequence polymorphism in the insulin receptor alpha-subunit mRNA in a patient with lipoatropic diabetes (LA-2) that localized to a region within amino acids 268-272. Direct sequence analysis revealed that the ribonuclease cleavage sites in patients A2-Boston and LA-2 were due to distinct single base changes in the insulin receptor gene and mRNA. Additional insulin receptor mRNA sequence polymorphisms were also identified as mismatches between the labeled RNA probes used and mRNA from several cultured human cell types. This study demonstrates that ribonuclease cleavage can rapidly detect and localize insulin receptor mRNA sequence mutations and polymorphic variations as small as single base changes. Further analysis of insulin receptor mRNA sequence alterations identified in this way may elucidate a possible genetic basis for functional insulin receptor defects in patients with severe insulin resistance and can also reveal some insulin receptor sequence polymorphisms that occur in the population at large.
Karasik, O’Hara, Srikanta, Swift, Soeldner, Kahn, and Herskowitz. (1989) 1989. “Genetically Programmed Selective Islet Beta-Cell Loss in Diabetic Subjects With Wolfram’s Syndrome”. Diabetes Care 12 (2): 135-8.
Insulin-producing beta-cells were selectively absent from the islets of Langerhans in postmortem specimens from two patients with Wolfram's syndrome. In families with multiple cases of this syndrome, we found a very high concordance rate (r = .910, P less than .001) among siblings for age at onset of diabetes mellitus. Taken together with the lack of markers for an autoimmune process, these findings suggest that diabetes mellitus in this syndrome results from genetically programmed selective beta-cell death.
Reddy, and Kahn. (1989) 1989. “Epidermal growth factor receptor defects in leprechaunism. A multiple growth factor-resistant syndrome”. J Clin Invest 84 (5): 1569-76. https://doi.org/10.1172/JCI114334.
Leprechaunism is a rare genetic disorder characterized by severe growth retardation and insulin resistance. Maximal epidermal growth factor (EGF) binding was reduced in fibroblasts from three unrelated patients with leprechaunism (Ark-1, Can-1, and Minn-1) compared with control (0.8-2.2%/mg protein vs. 5.5%/mg protein). This was due to a decrease in receptor affinity in Ark-1 and Can-1 and a decrease in receptor number in Minn-1. In all cell lines, EGF-stimulated receptor autophosphorylation was also decreased to 18-60% of control, whereas EGF internalization and degradation was normal. Sphingosine (40 microM), a protein kinase C inhibitor, increased EGF receptor affinity twofold in control cells and six- to nine-fold in cells of leprechaunism. However, sphingosine did not enhance EGF-stimulated receptor autophosphorylation in either the controls or the patients' cells. By contrast, only one of the three cell lines of patients with the type A syndrome demonstrated a decrease in EGF binding and all demonstrated normal or near normal EGF-stimulated receptor autophosphorylation. These data indicate that in patients with leprechaunism, there are functional abnormalities of the EGF receptor, as well as of the insulin receptor, that may contribute to the severity of the syndrome. These data also suggest a role for the insulin receptor in maintaining normal EGF receptor function in these cells.
Gross, Halban, Kahn, Weir, and Villa-Komaroff. (1989) 1989. “Partial diversion of a mutant proinsulin (B10 aspartic acid) from the regulated to the constitutive secretory pathway in transfected AtT-20 cells”. Proc Natl Acad Sci U S A 86 (11): 4107-11.
A patient with type II diabetes associated with hyperproinsulinemia has been shown to have a point mutation in one insulin gene allele, resulting in replacement of histidine with aspartic acid at position 10 of the B-chain. To investigate the basis of the proinsulin processing defect, we introduced an identical mutation in the rat insulin II gene and expressed both the normal and the mutant genes in the AtT-20 pituitary corticotroph cell line. Cells expressing the mutant gene showed increased secretion of proinsulin relative to insulin and rapid release of newly synthesized proinsulin. Moreover, the mutant cell lines did not store the prohormone nor did they release it upon stimulation with secretagogues. These data indicate that a significant fraction of the mutant prohormone is released via the constitutive secretory pathway rather than the regulated pathway, thereby bypassing granule-related processing and regulated release.
Hurrell, Pedersen, and Kahn. (1989) 1989. “Alterations in the hepatic insulin receptor kinase in genetic and acquired obesity in rats”. Endocrinology 125 (5): 2454-62. https://doi.org/10.1210/endo-125-5-2454.
Obesity is associated with insulin resistance and type II diabetes mellitus. In the present study, we have characterized hepatic insulin receptor function in two animal models of obesity: the Zucker fatty rat (ZFR), a model of genetic obesity with severe hyperinsulinemia, and the Sprague-Dawley rat with dietary obesity, a model of acquired obesity. Zucker fatty rats were also treated with streptozotocin (STZ) in an effort to examine the effects of relative insulin deficiency and hyperglycemia in the setting of obesity. Using wheat germ agglutinin-purified insulin receptor extracted from liver, no significant difference in insulin binding was identified in either model of obesity. beta-Subunit autophosphorylation was significantly decreased in both obese models relative to that in controls (72% in the obese ZFR and 49% in the overfed Sprague-Dawley model). Kinase activity, as measured by phosphorylation of the 1142-1153 synthetic peptide, was also decreased in both models of obesity by 22% and 64%, respectively. In the Zucker rat, STZ treatment led to an 80% increase in receptor concentration and a further 70% increase in beta-subunit autophosphorylation per receptor, whereas tyrosine kinase activity toward substrate was not altered. Since kinase activity is closely linked to autophosphorylation, we determined the fraction of autophosphorylated (activated) receptors vs. non-phosphorylated (inactive) receptors by using antiphosphotyrosine antibody to precipitate receptors bound with [125I]insulin. There was no significant difference in the percentage of activated insulin receptors in the dietary obese, ZFR, or STZ-treated Zucker rat vs. that in the controls. In all models, the percentage of activated receptors ranged from 32-46% of the total receptor pool. These data suggest that in genetic and acquired obesity, autophosphorylation of the beta-subunit is reduced and is a limiting factor in insulin receptor activation. A similar fraction of all receptors appears to undergo some level of autophosphorylation; however, full autophosphorylation and, thus, activation of the receptor do not occur, and this results in a decrease in kinase activity. This block in autophosphorylation may account for significant reductions in insulin receptor kinase function in obesity.
Perlman, Bottaro, White, and Kahn. 1989. “Conformational changes in the alpha- and beta-subunits of the insulin receptor identified by anti-peptide antibodies”. J Biol Chem 264 (15): 8946-50.
The structure of the insulin receptor was studied with polyclonal antibodies obtained from rabbits which were immunized with synthetic peptides having a sequence identity to three regions of the alpha-subunit and five regions of the beta-subunit. None of the alpha-subunit antibodies including alpha-Pep8 (residues 40-49 (Ullrich, A., Bell, J.R., Chen, E.Y., Herrera, R., Petruzzelli, L.M., Dull, T.J., Gray, A., Coussens, L., Liao, Y.-C., Tsubokawa, M., Mason, A., Seeburg, P.H., Grunfeld, C., Rosen, O.M., and Ramachandran, J. (1985) Nature 313, 756-761), alpha-Pep7 (12 amino acid C-terminal extension (Ebina, Y., Ellis, L., Jarnagin, K., Ederly, M., Graf, L., Clauser, E., Ou, J.-H., Masiar, F., Kan, Y.W., Goldfine, I.D., Roth, R.A., and Rutter, W.J. (1985) Cell 313, 747-758], or alpha-Pep6 (residues 1-7, 9) immunoprecipitated the human insulin receptor solubilized from IM-9 lymphocytes; however, alpha-Pep8 immunoprecipitated the dithiothreitol-reduced receptor. Antibodies prepared against the N terminus of the beta-subunit (alpha-Pep5, residues 780-790) and the ATP binding site (alpha-Pep3, residues 1013-1022) did not react with the intact receptor under any conditions; however, antibodies to the C terminus of the beta-subunit (alpha-Pep1, residues 1314-1324) and to the juxta-membrane region (alpha-Pep3, residues 952-962) immunoprecipitated the solubilized receptor in both its phosphorylated and nonphosphorylated forms. In contrast, the antibody reactive with the regulatory region of the beta-subunit which contains the major autophosphorylation sites (alpha-Pep2, residues 1143-1154) only precipitated the phosphorylated form. Thus the conformation of the extracellular domain of the receptor is rigid and stabilized by disulfide bonds, whereas several regions of the intracellular domain are accessible to antibodies and undergo conformational changes during autophosphorylation.