Publications

2017

2016

Soto, Marion, Catherine Chaumontet, Charles-David Mauduit, Gilles Fromentin, Rupert Palme, Daniel Tom\ e, and Patrick Even. 2016. “Intermittent Access to a Sucrose Solution Impairs Metabolism in Obesity-Prone But Not Obesity-Resistant Mice.”. Physiol Behav 154: 175-83. https://doi.org/10.1016/j.physbeh.2015.11.012.
Consumption of sugar-sweetened beverages is associated with overweight and obesity. In this study, we hypothesized that obesity-prone (OP) mice fed a high-fat high-sucrose diet (HFHS) are more sensitive to consumption of sucrose-sweetened water (SSW) than obesity-resistant (OR) mice. After 3weeks of ad libitum access to the HFHS diet (7.5h/day), 180 male mice were classified as either OP (upper quartile of body weight gain, 5.2±0.1g, n=45) or OR (lower quartile, 3.2±0.1g, n=45). OP and OR mice were subsequently divided into 3 subgroups that had access to HFHS (7.5h/day) for 16weeks, supplemented with: i) water (OP/water and OR/water); ii) water and SSW (12.6% w/v), available for 2h/day randomly when access to HFHS was available and for 5 randomly-chosen days/week (OP/SSW and OR/SSW); or iii) water and SSW for 8weeks, then only water for 8weeks (OP/SSW-water and OR/SSW-water). OR/SSW mice decreased their food intake compared to OR/water mice, while OP/SSW mice exhibited an increase in food and total energy intake compared to OP/water mice. OP/SSW mice also gained more body weight and fat mass than OP/water mice, showed an increase in liver triglycerides and developed insulin resistance. These effects were fully reversed in OP/SSW-water mice. In the gut, OR/SSW mice, but not OP/SSW mice, had an increase GLP-1 and CCK response to a liquid meal compared to mice drinking only water. OP/SSW mice had a decreased expression of melanocortin receptor 4 in the hypothalamus and increased expression of delta opioid receptor in the nucleus accumbens compared to OP/water mice when fasted that could explain the hyperphagia in these mice. When access to the sucrose solution was removed for 8weeks, OP mice had increased dopaminergic and opioidergic response to a sucrose solution. Thus, intermittent access to a sucrose solution in mice fed a HFHS diet induces changes in the gut and brain signaling, leading to increased energy intake and adverse metabolic consequences only in mice prone to HFHS-induced obesity.
Fujisaka, Shiho, Siegfried Ussar, Clary Clish, Suzanne Devkota, Jonathan M Dreyfuss, Masaji Sakaguchi, Marion Soto, et al. 2016. “Antibiotic Effects on Gut Microbiota and Metabolism Are Host Dependent.”. J Clin Invest 126 (12): 4430-43. https://doi.org/10.1172/JCI86674.
Interactions of diet, gut microbiota, and host genetics play important roles in the development of obesity and insulin resistance. Here, we have investigated the molecular links between gut microbiota, insulin resistance, and glucose metabolism in 3 inbred mouse strains with differing susceptibilities to metabolic syndrome using diet and antibiotic treatment. Antibiotic treatment altered intestinal microbiota, decreased tissue inflammation, improved insulin signaling in basal and stimulated states, and improved glucose metabolism in obesity- and diabetes-prone C57BL/6J mice on a high-fat diet (HFD). Many of these changes were reproduced by the transfer of gut microbiota from antibiotic-treated donors to germ-free or germ-depleted mice. These physiological changes closely correlated with changes in serum bile acids and levels of the antiinflammatory bile acid receptor Takeda G protein-coupled receptor 5 (TGR5) and were partially recapitulated by treatment with a TGR5 agonist. In contrast, antibiotic treatment of HFD-fed, obesity-resistant 129S1 and obesity-prone 129S6 mice did not improve metabolism, despite changes in microbiota and bile acids. These mice also failed to show a reduction in inflammatory gene expression in response to the TGR5 agonist. Thus, changes in bile acid and inflammatory signaling, insulin resistance, and glucose metabolism driven by an HFD can be modified by antibiotic-induced changes in gut microbiota; however, these effects depend on important interactions with the host’s genetic background and inflammatory potential.

2015

Soto, Marion, Catherine Chaumontet, Patrick C Even, Nachiket Nadkarni, Julien Piedcoq, Nicolas Darcel, Daniel Tom\ e, and Gilles Fromentin. 2015. “Intermittent Access to Liquid Sucrose Differentially Modulates Energy Intake and Related Central Pathways in Control or High-Fat Fed Mice.”. Physiol Behav 140: 44-53. https://doi.org/10.1016/j.physbeh.2014.12.008.
Intake of sodas has been shown to increase energy intake and to contribute to obesity in humans and in animal models, although the magnitude and importance of these effects are still debated. Moreover, intake of sugar sweetened beverages is often associated with high-fat food consumption in humans. We studied two different accesses to a sucrose-sweetened water (SSW, 12.3%, a concentration similar to that usually found in sugar sweetened beverages) in C57BL/6 mice fed a normal-fat (NF) or a high-fat (HF) diet in a scheduled access (7.5h). NF-fed and HF-fed mice received during 5weeks access to water, to SSW continuously for 7.5h (SSW), or to water plus SSW for 2h (randomly-chosen time slot for only 5 random days/week) (SSW-2h). Mouse preference for SSW was greater in HF-fed mice than NF-fed mice. Continuous SSW access induced weight gain whatever the diet and led to greater caloric intake than mice drinking water in NF-fed mice and in the first three weeks in HF-fed mice. In HF-fed mice, 2h-intermittent access to SSW induced a greater body weight gain than mice drinking water, and led to hyperphagia on the HF diet when SSW was accessible compared to days without SSW 2h-access (leading to greater overall caloric intake), possibly through inactivation of the anorexigenic neuropeptide POMC in the hypothalamus. This was not observed in NF-fed mice, but 2h-intermittent access to SSW stimulated the expression of dopamine, opioid and endocannabinoid receptors in the nucleus accumbens compared to water-access. In conclusion, in mice, a sucrose solution provided 2h-intermittently and a high-fat diet have combined effects on peripheral and central homeostatic systems involved in food intake regulation, a finding which has significant implications for human obesity.

2013

Schlehe, Julia S, Marion S M Journel, Kelsey P Taylor, Katherine D Amodeo, and Matthew J LaVoie. (2013) 2013. “The Mitochondrial Disease Associated Protein Ndufaf2 Is Dispensable for Complex-1 Assembly But Critical for the Regulation of Oxidative Stress.”. Neurobiol Dis 58: 57-67. https://doi.org/10.1016/j.nbd.2013.05.007.
Deficiency in human mitochondrial Complex-1 has been linked to a wide variety of neurological disorders. Homozygous deletion of the Complex-1 associated protein, Ndufaf2, leads to a severe juvenile onset encephalopathy involving degeneration of the substantia nigra and other sub-cortical regions resulting in adolescent lethality. To understand the precise role of Ndufaf2 in Complex-1 function and its links to neurologic disease, we studied the effects on Complex-1 assembly and function, as well as pathological consequences at the cellular level, in multiple in vitro models of Ndufaf2 deficiency. Using both Ndufaf2-deficient human neuroblastoma cells and primary fibroblasts cultured from Ndufaf2 knock-out mice we found that Ndufaf2-deficiency selectively reduces Complex-1 activity. While Ndufaf2 is traditionally referred to as an assembly factor of Complex-1, surprisingly, however, Ndufaf2-deficient cells were able to assemble a fully mature Complex-1 enzyme, albeit with reduced kinetics. Importantly, no evidence of intermediate or incomplete assembly was observed. Ndufaf2 deficiency resulted in significant increases in oxidative stress and mitochondrial DNA deletion, consistent with contemporary hypotheses regarding the pathophysiology of inherited mutations in Complex-1 disorders. These data suggest that Ndufaf2, unlike other Complex-1 assembly factors, may be more accurately described as a chaperone involved in proper folding during Complex-1 assembly, since it is dispensable for Complex-1 maturation but not its proper function.

2012

Journel, Marion, Catherine Chaumontet, Nicolas Darcel, Gilles Fromentin, and Daniel Tom\ e. 2012. “Brain Responses to High-Protein Diets.”. Adv Nutr 3 (3): 322-9. https://doi.org/10.3945/an.112.002071.
Proteins are suspected to have a greater satiating effect than the other 2 macronutrients. After protein consumption, peptide hormones released from the gastrointestinal tract (mainly anorexigenic gut peptides such as cholecystokinin, glucagon peptide 1, and peptide YY) communicate information about the energy status to the brain. These hormones and vagal afferents control food intake by acting on brain regions involved in energy homeostasis such as the brainstem and the hypothalamus. In fact, a high-protein diet leads to greater activation than a normal-protein diet in the nucleus tractus solitarius and in the arcuate nucleus. More specifically, neural mechanisms triggered particularly by leucine consumption involve 2 cellular energy sensors: the mammalian target of rapamycin and AMP-activated protein kinase. In addition, reward and motivation aspects of eating behavior, controlled mainly by neurons present in limbic regions, play an important role in the reduced hedonic response of a high-protein diet. This review examines how metabolic signals emanating from the gastrointestinal tract after protein ingestion target the brain to control feeding, energy expenditure, and hormones. Understanding the functional roles of brain areas involved in the satiating effect of proteins and their interactions will demonstrate how homeostasis and reward are integrated with the signals from peripheral organs after protein consumption.