Publications by Year: 2007

2007

Russell, Steven, and Ronald Kahn. (2007) 2007. “Endocrine regulation of ageing”. Nat Rev Mol Cell Biol 8 (9): 681-91. https://doi.org/10.1038/nrm2234.
Over the past 15 years it has become clear that mutations in genes that regulate endocrine signalling pathways can prolong lifespan. Lifespan can be increased by altered endocrine signalling in a group of cells or a single tissue, which indicates that crosstalk between tissues functions to coordinate ageing of the organism. These endocrine pathways might serve as targets for the manipulation of the ageing process and prevention of age-related diseases.
Kulkarni, Rohit, and Ronald Kahn. 2007. “Ephs and ephrins keep pancreatic Beta cells connected”. Cell 129 (2): 241-3. https://doi.org/10.1016/j.cell.2007.04.006.
How insulin-secreting beta cells of the pancreas communicate with each other is largely unknown. In this issue of Cell, Konstantinova et al. (2007) show that the signaling proteins EphA and ephrin-A modulate insulin secretion, providing fresh insights into the functional significance of the clustering of beta cells, which occurs in islets.
Chang, Lin, Jifeng Zhang, Yu-Hua Tseng, Chang-Qing Xie, Jacob Ilany, Jens Brüning, Zhongcui Sun, et al. 2007. “Rad GTPase deficiency leads to cardiac hypertrophy”. Circulation 116 (25): 2976-83. https://doi.org/10.1161/CIRCULATIONAHA.107.707257.
BACKGROUND: Rad (Ras associated with diabetes) GTPase is the prototypic member of a subfamily of Ras-related small G proteins. The aim of the present study was to define whether Rad plays an important role in mediating cardiac hypertrophy. METHODS AND RESULTS: We document for the first time that levels of Rad mRNA and protein were decreased significantly in human failing hearts (n=10) compared with normal hearts (n=3; P
Jing, Enxuan, Stephane Gesta, and Ronald Kahn. (2007) 2007. “SIRT2 Regulates Adipocyte Differentiation through FoxO1 Acetylation Deacetylation”. Cell Metab 6 (2): 105-14. https://doi.org/10.1016/j.cmet.2007.07.003.
The family of mammalian Sirtuin proteins comprises seven members homologous to yeast Sir2. Here we show that SIRT2, a cytoplasmic sirtuin, is the most abundant sirtuin in adipocytes. Sirt2 expression is downregulated during preadipocyte differentiation in 3T3-L1 cells. Overexpression of SIRT2 inhibits differentiation, whereas reducing SIRT2 expression promotes adipogenesis. Both effects are accompanied by corresponding changes in the expression of PPARgamma, C/EBPalpha, and genes marking terminal adipocyte differentiation, including Glut4, aP2, and fatty acid synthase. The mechanism underlying the effects of reduced SIRT2 in 3T3-L1 adipocytes includes increased acetylation of FOXO1, with direct interaction between SIRT2 and FOXO1. This interaction enhances insulin-stimulated phosphorylation of FOXO1, which in turn regulates FOXO1 nuclear and cytosolic localization. Thus, Sirt2 acts as an important regulator of adipocyte differentiation through modulation of FOXO1 acetylation/phosphorylation and activity and may play a role in controlling adipose tissue mass and function.
Almind, Katrine, Monia Manieri, William Sivitz, Saverio Cinti, and Ronald Kahn. 2007. “Ectopic brown adipose tissue in muscle provides a mechanism for differences in risk of metabolic syndrome in mice”. Proc Natl Acad Sci U S A 104 (7): 2366-71. https://doi.org/10.1073/pnas.0610416104.
C57BL/6 (B6) mice subjected to a high-fat diet develop metabolic syndrome with obesity, hyperglycemia, and insulin resistance, whereas 129S6/SvEvTac (129) mice are relatively protected from this disorder because of differences in higher basal energy expenditure in 129 mice, leading to lower weight gain. At a molecular level, this difference correlates with a marked higher expression of uncoupling protein 1 (UCP1) and a higher degree of uncoupling in vitro in mitochondria isolated from muscle of 129 versus B6 mice. Detailed histological examination, however, reveals that this UCP1 is in mitochondria of brown adipocytes interspersed between muscle bundles. Indeed, the number of UCP1-positive brown fat cells in intermuscular fat in 129 mice is >700-fold higher than in B6 mice. These brown fat cells are subject to further up-regulation of UCP1 after stimulation with a beta3-adrenergic receptor agonist. Thus, ectopic deposits of brown adipose tissue in intermuscular depots with regulatable expression of UCP1 provide a genetically based mechanism of protection from weight gain and metabolic syndrome between strains of mice.
Page, Kathleen, Stephanie Dejardin, Ronald Kahn, Rohit Kulkarni, Kevan Herold, and Silvio Inzucchi. (2007) 2007. “A patient with type B insulin resistance syndrome, responsive to immune therapy”. Nat Clin Pract Endocrinol Metab 3 (12): 835-40. https://doi.org/10.1038/ncpendmet0693.
BACKGROUND: A 55-year-old woman with vitiligo, hypothyroidism, interstitial lung disease and diabetes mellitus developed severe insulin resistance during a hospital admission for respiratory failure. Before hospitalization, her HbA(1c) level was 8.1% on approximately 100 U/day of insulin. Her interstitial lung disease had been treated with glucocorticoids, but after their withdrawal her insulin requirements had increased dramatically. She remained hyperglycemic (blood glucose levels 16.7-27.8 mmol/l), despite intravenous insulin at doses as high as 30,000 U/day. INVESTIGATIONS: The patient's serum creatinine level was 301 micromol/l and her liver function tests were normal. A mildly elevated white cell count was present. The patient was diagnosed with pneumonia due to Pseudomonas aeruginosa. When the patient's plasma glucose level was 22.5 mmol/l, her plasma C-peptide level was 0.9 nmol/l and her serum insulin level was 294 pmol/l. At that time the patient was on 2,600 U/day of intravenous insulin aspart. Anti-insulin and anti-islet-cell antibodies were not detected, but anti-insulin-receptor antibodies were found. DIAGNOSIS: Type B insulin resistance syndrome. MANAGEMENT: The patient's insulin resistance responded to glucocorticoids and plasmapheresis. After the patient was treated with prednisone (60 mg/day), her insulin requirements decreased within 1 week to pre-admission doses. When steroids were subsequently discontinued, glycemic control deteriorated once again. Plasmapheresis was initiated, inducing a striking acute decline in insulin needs. On a maintenance dose of 10 mg prednisone/day, glucose control improved (HbA(1c) 5.8%) with an average of 60 U of isophane insulin twice daily.
Bezy, Olivier, Cecile Vernochet, Stephane Gesta, Stephen Farmer, and Ronald Kahn. (2007) 2007. “TRB3 Blocks Adipocyte Differentiation through the Inhibition of C EBPbeta Transcriptional Activity”. Mol Cell Biol 27 (19): 6818-31. https://doi.org/10.1128/MCB.00375-07.
TRB3 has been implicated in the regulation of several biological processes in mammalian cells through its ability to influence Akt and other signaling pathways. In this study, we investigated the role of TRB3 in regulating adipogenesis and the activity of adipogenic transcription factors. We find that TRB3 is expressed in 3T3-L1 preadipocytes, and this expression is transiently suppressed during the initial days of differentiation concomitant with induction of C/EBPbeta. This event appears to be a prerequisite for adipogenesis. Overexpression of TRB3 blocks differentiation of 3T3-L1 cells at a step downstream of C/EBPbeta. Ectopic expression of TRB3 in mouse fibroblasts also inhibits the C/EBPbeta-dependent induction of PPARgamma2 and blocks their differentiation into adipocytes. This inhibition of preadipocyte differentiation by TRB3 appears to be the result of two complementary effects. First, TRB3 inhibits extracellular signal-regulated kinase activity, which prevents the phosphorylation of regulatory sites on C/EBPbeta. Second, TRB3 directly interacts with the DR1 domain of C/EBPbeta in the nucleus, further inhibiting both its ability to bind its response element and its ability to transactivate the C/EBPalpha and a-FABP promoters. Thus, TRB3 is an important negative regulator of adipogenesis that acts at an early step in the differentiation cascade to block the C/EBPbeta proadipogenic function.
Taniguchi, Cullen, José Alemán, Kohjiro Ueki, Ji Luo, Tomoichiro Asano, Hideaki Kaneto, Gregory Stephanopoulos, Lewis Cantley, and Ronald Kahn. (2007) 2007. “The p85alpha regulatory subunit of phosphoinositide 3-kinase potentiates c-Jun N-terminal kinase-mediated insulin resistance”. Mol Cell Biol 27 (8): 2830-40. https://doi.org/10.1128/MCB.00079-07.
Insulin resistance is a defining feature of type 2 diabetes and the metabolic syndrome. While the molecular mechanisms of insulin resistance are multiple, recent evidence suggests that attenuation of insulin signaling by c-Jun N-terminal kinase (JNK) may be a central part of the pathobiology of insulin resistance. Here we demonstrate that the p85alpha regulatory subunit of phosphoinositide 3-kinase (PI3K), a key mediator of insulin's metabolic actions, is also required for the activation of JNK in states of insulin resistance, including high-fat diet-induced obesity and JNK1 overexpression. The requirement of the p85alpha regulatory subunit for JNK occurs independently of its role as a component of the PI3K heterodimer and occurs only in response to specific stimuli, namely, insulin and tunicamycin, a chemical that induces endoplasmic reticulum stress. We further show that insulin and p85 activate JNK by via cdc42 and MKK4. The activation of this cdc42/JNK pathway requires both an intact N terminus and functional SH2 domains within the C terminus of the p85alpha regulatory subunit. Thus, p85alpha plays a dual role in regulating insulin sensitivity and may mediate cross talk between the PI3K and stress kinase pathways.
Katic, Masa, Adam Kennedy, Igor Leykin, Andrew Norris, Aileen McGettrick, Stephane Gesta, Steven Russell, Matthias Bluher, Eleftheria Maratos-Flier, and Ronald Kahn. (2007) 2007. “Mitochondrial gene expression and increased oxidative metabolism: role in increased lifespan of fat-specific insulin receptor knock-out mice”. Aging Cell 6 (6): 827-39. https://doi.org/10.1111/j.1474-9726.2007.00346.x.
Caloric restriction, leanness and decreased activity of insulin/insulin-like growth factor 1 (IGF-1) receptor signaling are associated with increased longevity in a wide range of organisms from Caenorhabditis elegans to humans. Fat-specific insulin receptor knock-out (FIRKO) mice represent an interesting dichotomy, with leanness and increased lifespan, despite normal or increased food intake. To determine the mechanisms by which a lack of insulin signaling in adipose tissue might exert this effect, we performed physiological and gene expression studies in FIRKO and control mice as they aged. At the whole body level, FIRKO mice demonstrated an increase in basal metabolic rate and respiratory exchange ratio. Analysis of gene expression in white adipose tissue (WAT) of FIRKO mice from 6 to 36 months of age revealed persistently high expression of the nuclear-encoded mitochondrial genes involved in glycolysis, tricarboxylic acid cycle, beta-oxidation and oxidative phosphorylation as compared to expression of the same genes in WAT from controls that showed a tendency to decline in expression with age. These changes in gene expression were correlated with increased cytochrome c and cytochrome c oxidase subunit IV at the protein level, increased citrate synthase activity, increased expression of peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha) and PGC-1beta, and an increase in mitochondrial DNA in WAT of FIRKO mice. Together, these data suggest that maintenance of mitochondrial activity and metabolic rates in adipose tissue may be important contributors to the increased lifespan of the FIRKO mouse.
Farese, Robert, Mini Sajan, Hong Yang, Pengfei Li, Steven Mastorides, William Gower, Sonali Nimal, et al. (2007) 2007. “Muscle-specific knockout of PKC-lambda impairs glucose transport and induces metabolic and diabetic syndromes”. J Clin Invest 117 (8): 2289-301. https://doi.org/10.1172/JCI31408.
Obesity, the metabolic syndrome, and type 2 diabetes mellitus (T2DM) are major global health problems. Insulin resistance is frequently present in these disorders, but the causes and effects of such resistance are unknown. Here, we generated mice with muscle-specific knockout of the major murine atypical PKC (aPKC), PKC-lambda, a postulated mediator for insulin-stimulated glucose transport. Glucose transport and translocation of glucose transporter 4 (GLUT4) to the plasma membrane were diminished in muscles of both homozygous and heterozygous PKC-lambda knockout mice and were accompanied by systemic insulin resistance; impaired glucose tolerance or diabetes; islet beta cell hyperplasia; abdominal adiposity; hepatosteatosis; elevated serum triglycerides, FFAs, and LDL-cholesterol; and diminished HDL-cholesterol. In contrast to the defective activation of muscle aPKC, insulin signaling and actions were intact in muscle, liver, and adipocytes. These findings demonstrate the importance of aPKC in insulin-stimulated glucose transport in muscles of intact mice and show that insulin resistance and resultant hyperinsulinemia owing to a specific defect in muscle aPKC is sufficient to induce abdominal obesity and other lipid abnormalities of the metabolic syndrome and T2DM. These findings are particularly relevant because humans who have obesity, impaired glucose tolerance, and T2DM reportedly have defective activation and/or diminished levels of muscle aPKC.