Cellular and molecular mechanisms of adipose tissue plasticity in muscle insulin receptor knockout mice

Cariou, Bertrand, Catherine Postic, Philippe Boudou, Remy Burcelin, Ronald Kahn, Jean Girard, Anne-Françoise Burnol, and Franck Mauvais-Jarvis. 2004. “Cellular and molecular mechanisms of adipose tissue plasticity in muscle insulin receptor knockout mice”. Endocrinology 145 (4): 1926-32.

Abstract

White adipose tissue (WAT) plays a critical role in the development of insulin resistance via secretion of free fatty acids (FFA) and adipocytokines. Muscle-specific insulin receptor knockout (MIRKO) mice do not develop insulin resistance or diabetes under physiological conditions despite a marked increase in adiposity and plasma FFA. On the contrary, WAT of MIRKO is sensitized to insulin action during a euglycemic clamp, and WAT glucose utilization is dramatically increased. To get insight into the potential antidiabetic role of MIRKO adiposity, we have studied insulin action in WAT during a euglycemic, hyperinsulinemic clamp, and we have characterized the morphology and biology of WAT. During the clamp, there is no alteration in the expression or activation in the insulin signaling molecules involved in glucose transport through the phosphoinositide 3-kinase/Akt and CAP/Cbl pathways in WAT from MIRKO. The 53% increase in WAT mass results from a 48% increase in adipocyte number (P
Last updated on 03/08/2023