The Unfolded Protein Response (UPR) maintains homeostasis in the endoplasmic reticulum (ER) and defends against ER stress, an underlying factor in various human diseases. During the UPR, numerous genes are activated that sustain and protect the ER. These responses are known to involve the canonical UPR transcription factors XBP1, ATF4, and ATF6. Here, we show in C. elegans that the conserved stress defense factor SKN-1/Nrf plays a central and essential role in the transcriptional UPR. While SKN-1/Nrf has a well-established function in protection against oxidative and xenobiotic stress, we find that it also mobilizes an overlapping but distinct response to ER stress. SKN-1/Nrf is regulated by the UPR, directly controls UPR signaling and transcription factor genes, binds to common downstream targets with XBP-1 and ATF-6, and is present at the ER. SKN-1/Nrf is also essential for resistance to ER stress, including reductive stress. Remarkably, SKN-1/Nrf-mediated responses to oxidative stress depend upon signaling from the ER. We conclude that SKN-1/Nrf plays a critical role in the UPR, but orchestrates a distinct oxidative stress response that is licensed by ER signaling. Regulatory integration through SKN-1/Nrf may coordinate ER and cytoplasmic homeostasis.
Publications
2013
2012
Excess adipose tissue is associated with metabolic disease and reduced lifespan, whereas caloric restriction decreases these risks. Here we show that as mice age, there is down-regulation of Dicer and miRNA processing in adipose tissue resulting in decreases of multiple miRNAs. A similar decline of Dicer with age is observed in C. elegans. This is prevented in both species by caloric restriction. Decreased Dicer expression also occurs in preadipocytes from elderly humans and can be produced in cells by exposure to oxidative stress and UV radiation. Knockdown of Dicer in cells results in premature senescence, and fat-specific Dicer knockout renders mice hypersensitive to oxidative stress. Finally, Dicer loss-of-function mutations in worms reduce lifespan and stress tolerance, while overexpression of Dicer confers stress resistance. Thus, regulation of miRNA processing in adipose-related tissues plays an important role in longevity and the ability of an organism to respond to environmental stress and age-related disease.
SKN-1/Nrf plays multiple essential roles in development and cellular homeostasis. We demonstrate that SKN-1 executes a specific and appropriate transcriptional response to changes in available nutrients, leading to metabolic adaptation. We isolated gain-of-function (gf) alleles of skn-1, affecting a domain of SKN-1 that binds the transcription factor MXL-3 and the mitochondrial outer membrane protein PGAM-5. These skn-1(gf) mutants perceive a state of starvation even in the presence of plentiful food. The aberrant monitoring of cellular nutritional status leads to an altered survival response in which skn-1(gf) mutants transcriptionally activate genes associated with metabolism, adaptation to starvation, aging, and survival. The triggered starvation response is conserved in mice with constitutively activated Nrf and may contribute to the tumorgenicity associated with activating Nrf mutations in mammalian somatic cells. Our findings delineate an evolutionarily conserved metabolic axis of SKN-1/Nrf, further establishing the complexity of this pathway.
The TOR kinase, which is present in the functionally distinct complexes TORC1 and TORC2, is essential for growth but associated with disease and aging. Elucidation of how TOR influences life span will identify mechanisms of fundamental importance in aging and TOR functions. Here we show that when TORC1 is inhibited genetically in C. elegans, SKN-1/Nrf, and DAF-16/FoxO activate protective genes, and increase stress resistance and longevity. SKN-1 also upregulates TORC1 pathway gene expression in a feedback loop. Rapamycin triggers a similar protective response in C. elegans and mice, but increases worm life span dependent upon SKN-1 and not DAF-16, apparently by interfering with TORC2 along with TORC1. TORC1, TORC2, and insulin/IGF-1-like signaling regulate SKN-1 activity through different mechanisms. We conclude that modulation of SKN-1/Nrf and DAF-16/FoxO may be generally important in the effects of TOR signaling in vivo and that these transcription factors mediate an opposing relationship between growth signals and longevity.
2011
SKN-1, the Caenorhabditis elegans Nrf1/2/3 ortholog, promotes both oxidative stress resistance and longevity. SKN-1 responds to oxidative stress by upregulating genes that detoxify and defend against free radicals and other reactive molecules, a SKN-1/Nrf function that is both well-known and conserved. Here we show that SKN-1 has a broader and more complex role in maintaining cellular stress defenses. SKN-1 sustains expression and activity of the ubiquitin-proteasome system (UPS) and coordinates specific protective responses to perturbations in protein synthesis or degradation through the UPS. If translation initiation or elongation is impaired, SKN-1 upregulates overlapping sets of cytoprotective genes and increases stress resistance. When proteasome gene expression and activity are blocked, SKN-1 activates multiple classes of proteasome subunit genes in a compensatory response. SKN-1 thereby maintains UPS activity in the intestine in vivo under normal conditions and promotes survival when the proteasome is inhibited. In contrast, when translation elongation is impaired, SKN-1 does not upregulate proteasome genes, and UPS activity is then reduced. This indicates that UPS activity depends upon presence of an intact translation elongation apparatus; and it supports a model, suggested by genetic and biochemical studies in yeast, that protein synthesis and degradation may be coupled processes. SKN-1 therefore has a critical tissue-specific function in increasing proteasome gene expression and UPS activity under normal conditions, as well as when the UPS system is stressed, but mounts distinct responses when protein synthesis is perturbed. The specificity of these SKN-1–mediated stress responses, along with the apparent coordination between UPS and translation elongation activity, may promote protein homeostasis under stress or disease conditions. The data suggest that SKN-1 may increase longevity, not only through its well-documented role in boosting stress resistance, but also through contributing to protein homeostasis.
2010
Caenorhabditis elegans SKN-1 (ortholog of mammalian Nrf1/2/3) is critical for oxidative stress resistance and promotes longevity under reduced insulin/IGF-1-like signaling (IIS), dietary restriction (DR), and normal conditions. SKN-1 inducibly activates genes involved in detoxification, protein homeostasis, and other functions in response to stress. Here we used genome-scale RNA interference (RNAi) screening to identify mechanisms that prevent inappropriate SKN-1 target gene expression under non-stressed conditions. We identified 41 genes for which knockdown leads to activation of a SKN-1 target gene (gcs-1) through skn-1-dependent or other mechanisms. These genes correspond to multiple cellular processes, including mRNA translation. Inhibition of translation is known to increase longevity and stress resistance and may be important for DR-induced lifespan extension. One model postulates that these effects derive from reduced energy needs, but various observations suggest that specific longevity pathways are involved. Here we show that translation initiation factor RNAi robustly induces SKN-1 target gene transcription and confers skn-1-dependent oxidative stress resistance. The accompanying increases in longevity are mediated largely through the activities of SKN-1 and the transcription factor DAF-16 (FOXO), which is required for longevity that derives from reduced IIS. Our results indicate that the SKN-1 detoxification gene network monitors various metabolic and regulatory processes. Interference with one of these processes, translation initiation, leads to a transcriptional response whereby SKN-1 promotes stress resistance and functions together with DAF-16 to extend lifespan. This stress response may be beneficial for coping with situations that are associated with reduced protein synthesis.
2009
Studies in model organisms have identified regulatory processes that profoundly influence aging, many of which modulate resistance against environmental or metabolic stresses. In Caenorhabditis elegans, the transcription regulator SKN-1 is important for oxidative stress resistance and acts in multiple longevity pathways. SKN-1 is the ortholog of mammalian Nrf proteins, which induce Phase 2 detoxification genes in response to stress. Phase 2 enzymes defend against oxygen radicals and conjugate electrophiles that are produced by Phase 1 detoxification enzymes, which metabolize lipophilic compounds. Here, we have used expression profiling to identify genes and processes that are regulated by SKN-1 under normal and stress-response conditions. Under nonstressed conditions SKN-1 upregulates numerous genes involved in detoxification, cellular repair, and other functions, and downregulates a set of genes that reduce stress resistance and lifespan. Many of these genes appear to be direct SKN-1 targets, based upon presence of predicted SKN-binding sites in their promoters. The metalloid sodium arsenite induces skn-1-dependent activation of certain detoxification gene groups, including some that were not SKN-1-upregulated under normal conditions. An organic peroxide also triggers induction of a discrete Phase 2 gene set, but additionally stimulates a broad SKN-1-independent response. We conclude that under normal conditions SKN-1 has a wide range of functions in detoxification and other processes, including modulating mechanisms that reduce lifespan. In response to stress, SKN-1 and other regulators tailor transcription programs to meet the challenge at hand. Our findings reveal striking complexity in SKN-1 functions and the regulation of systemic detoxification defenses.
The C. elegans TRIM-NHL protein NHL-2 functions as a co-factor for the microRNA Induced Silencing Complex (miRISC) and thereby enhances the post-transcriptional repression of several genetically verified microRNA targets, including hbl-1 and let-60/Ras (by the let-7-family of microRNAs) and cog-1 (by the lsy-6 microRNA). NHL-2 is localized to cytoplasmic processing bodies (P-bodies) and physically associates with the P-body protein CGH-1 and the core miRISC components ALG-1/2 and AIN-1. nhl-2 and cgh-1mutations compromise the repression of microRNA targets in vivo, but do not affect microRNA biogenesis, indicating a role for a NHL-2-CGH-1 complex in the effector phase of miRISC activity. We propose that the NHL-2-CGH-1 complex functions in association with mature miRISC to modulate the efficacy of microRNA:target interactions in response to physiological and developmental signals, and thereby helps ensure the robustness of genetic regulatory pathways regulated by microRNAs.
2008
Germline apoptosis shares with somatic apoptosis a reliance on key components of the core apoptotic machinery, including CED-3 and CED-4. However, germline apoptosis differs from somatic apoptosis in its regulation. Whereas somatic apoptosis is developmentally programmed by cell lineage, germline apoptosis occurs as part of an oogenesis program. One category of germline apoptosis, dubbed "physiological" germline apoptosis, reduces the number of cells that complete oogenesis, and is independent of the BH3-only apoptosis effecter EGL-1. A second category, termed "stress-induced" germline apoptosis, is triggered by a genomic integrity checkpoint. Some mechanisms that are monitored by this DNA-damage checkpoint are also involved in germ cell "immortality," or preservation of a continuous germ cell lineage over successive generations. In addition, exposure to certain environmental insults or pathogens induces germ cell apoptosis. Here we will review the mechanisms that control each of the pathways leading to germ cell apoptosis and discuss their functional significance. Germline apoptosis is an integral part of oogenesis in many animals, including humans. Because many of the regulators of C. elegans germline apoptosis are conserved, we suggest that this nematode provides a valuable model for understanding controls of germline apoptosis more broadly.