Lauris, Crettaz, and Kahn. (1986) 1986. “Coordinate Roles of Insulin and Glucose on the Growth of Hepatoma Cells in Culture”. Endocrinology 118 (6): 2519-24. https://doi.org/10.1210/endo-118-6-2519.
Publications
1986
Podskalny, and Kahn. (1986) 1986. “Insulin Activation of Glycogen Synthase in Cultured Human Fibroblasts Is Not Mediated Solely via the Insulin Receptor”. Horm Metab Res 18 (5): 335-40. https://doi.org/10.1055/s-2007-1012309.
Insulin binds to its specific cell surface receptor in cultured human fibroblasts and also stimulates the conversion of glycogen synthase from the glucose-6-phosphate (G-6-P) dependent to the G-6-P independent form. Although these two processes are tightly coupled in most target tissues for insulin action, in the fibroblast a variety of findings question the relationship of these two events to one another. In human fibroblasts the amount of insulin required to displace half of the 125I-insulin bound to the insulin receptor is 4 ng/ml (6.6 X 10(-10)M), but the activation of glycogen synthase is not maximal until 1-10 micrograms/ml with an ED50 of 30 ng/ml insulin. Antibodies directed against the insulin receptor, which activate glycogen synthase in both fat and muscle, do not stimulate the activation of glycogen synthase in the fibroblast. Fab fragments from anti-insulin receptor antibody compete for insulin binding, but do not inhibit the insulin-stimulated rise in independent activity. The insulin-like growth factor, MSA, which is 1% as potent as insulin in stimulating glucose oxidation in rat fat cells and in inhibiting 125I-insulin binding to human fibroblasts, is 25% as potent as insulin in stimulating glycogen synthase. Proinsulin is 2-10% as potent as insulin, but behaves as a "partial agonist" of insulin action in the fibroblast, i.e. proinsulin is able to elicit only 60% of the maximal response of insulin in the glycogen synthase assay, even at high concentrations. Finally, cell lines from patients with clearly defective insulin receptors exhibit normal insulin dose response curves for the activation of glycogen synthase.(ABSTRACT TRUNCATED AT 250 WORDS)
Catanese, Grigorescu, King, and Kahn. (1986) 1986. “The Human Erythrocyte Insulin-Like Growth Factor I Receptor: Characterization and Demonstration of Ligand-Stimulated Autophosphorylation”. J Clin Endocrinol Metab 62 (4): 692-9. https://doi.org/10.1210/jcem-62-4-692.
To characterize the insulin-like growth factor I (IGF-I) receptor on human erythrocytes, cells were purified from peripheral blood by Ficoll-Hypaque gradient centrifugation and incubated with [125I]IGF-I. Specific binding was maximal at pH 8.0 after 24 h at 4 C and increased linearly with cell number to 3.9 +/- 0.2% (+/- SEM) for 3.0 X 10(9) cells/ml. The Scatchard plot of the binding data was linear, with 7 fmol [125I]IGF-I bound/10(9) cells and an affinity constant (K) of 1.8 X 10(9) M-1. Unlabeled IGF-I inhibited tracer binding half-maximally at 6 ng/ml. Multiplication-stimulating activity (or rat IGF-II) was 40% as potent (ED50, 15 ng/ml), whereas insulin and proinsulin were 30- to 500-fold less potent. A monoclonal antibody to the IGF-I receptor (alpha IR-3) inhibited IGF-I binding by 50% at a 1:1000 dilution and by 80% at a 1:250 dilution. Insulin binding was unaffected by the same dilutions. IGF-I receptor phosphorylation was studied in erythrocyte ghosts prepared by hypotonic lysis and solubilized in 1% Triton. The extract was preincubated with and without 100 ng/ml IGF-I or porcine insulin and incubated with [gamma-32P]ATP in the presence of Mn2+, and the receptor was identified by immunoprecipitation with alpha IR-3 antibody and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. IGF-I stimulated 4-fold the incorporation of 32P into a protein of 95,000 mol wt, which was immunoprecipitated by alpha IR-3; insulin produced a 2-fold stimulation of this protein. This protein corresponds to the beta-subunit of the IGF-I receptor. These data demonstrate that human erythrocytes have specific receptors for IGF-I, and that this IGF-I receptor, like the insulin receptor, undergoes ligand-stimulated autophosphorylation. Thus, analysis of erythrocyte IGF-I binding and receptor phosphorylation may be useful tools for the study of patients with a variety of growth disorders.
Sale, Fujita-Yamaguchi, and Kahn. 1986. “Characterization of Phosphatidylinositol Kinase Activity Associated With the Insulin Receptor”. Eur J Biochem 155 (2): 345-51.
Various lipids were tested as substrates for the insulin receptor kinase using either receptor partially purified from rat hepatoma cells by wheat-germ-agglutinin-Sepharose chromatography or receptor purified from human placenta by insulin-Sepharose affinity chromatography. Phosphatidylinositol was phosphorylated to phosphatidylinositol 4-phosphate by the partially purified insulin receptor. In contrast, phosphatidylinositol 4-phosphate and diacylglycerol were not phosphorylated. In some, but not all preparations of partially purified insulin receptor, the phosphatidylinositol kinase activity was stimulated by insulin (mean effect 33%). Phosphatidylinositol kinase activity was retained in insulin receptor purified to homogeneity. Insulin regulation of the phosphatidylinositol kinase was lost in the purified receptor; however, dithiothreitol stimulated both autophosphorylation of the purified receptor and phosphatidylinositol kinase activity in parallel about threefold. (Glu80Tyr20)n, a polymeric substrate specific to tyrosine kinases, inhibited the phosphatidylinositol kinase activity of the purified receptor by greater than 90% and inhibited receptor autophosphorylation by 67%. Immunoprecipitation by specific anti-receptor antibodies depleted by greater than 90% the phosphatidylinositol kinase activity in the supernatant of the purified receptor and the phosphatidylinositol kinase activity was recovered in the precipitate in parallel with receptor autophosphorylation activity. These characteristics of the phosphatidylinositol kinase activity of the purified insulin receptor and its metal ion preference paralleled those of the receptor tyrosine kinase activity and differed from bulk phosphatidylinositol kinase activity in cell extracts, which was not significantly inhibited by (Glu80Tyr20)n, stimulated by dithiothreitol or depleted by immunoprecipitation with anti-(insulin receptor) antibody. These results suggest that the insulin receptor is associated with a phosphatidylinositol kinase activity; however, this activity is not well regulated by insulin. This kinase appears to be distinct from the major phosphatidylinositol kinase(s) of cells. Its relationship to insulin action needs further study.
Grigorescu, Flier, and Kahn. (1986) 1986. “Characterization of Binding and Phosphorylation Defects of Erythrocyte Insulin Receptors in the Type A Syndrome of Insulin Resistance”. Diabetes 35 (2): 127-38.
The type A syndrome of insulin resistance and acanthosis nigricans is characterized by severe insulin resistance due to a cellular defect in insulin action. To better understand the molecular nature of this defect, we have investigated insulin binding to circulating monocytes, erythrocytes, and the Triton X-100-solubilized erythrocyte receptor, and insulin-stimulated receptor autophosphorylation using cells and receptor from three type A patients. Insulin binding in both circulating cells and the soluble extract of erythrocytes indicated a heterogeneity of defects. Patients A1 and A2 both presented a major decrease in tracer insulin binding to intact cells and soluble insulin receptor. Determination of stoichiometric binding parameters using a cooperative model indicated that in patient A1 this was due to a reduction in the number of receptors, whereas in patient A2 the affinity constant for binding was decreased. Patient A3 presented near-normal insulin binding to erythrocytes and normal binding in intact monocytes, solubilized erythrocyte receptors, and cultured fibroblasts. Affinity labeling of erythrocyte receptor from this patient revealed a normal alpha-subunit and also a normal relative distribution of the higher-molecular-weight, nonreduced oligomeric forms of the receptor. Receptor autophosphorylation was measured using the solubilized insulin receptor from erythrocytes. The maximal stimulated phosphorylation was reduced by 79%, 76%, and 52% in patients A1, A2, and A3, respectively, relative to the simultaneous control. In all three patients, the autophosphorylation was stimulated only 1.0-3.5 times the basal level compared with controls, in which the stimulation was 5.7-fold +/- 1.2 (mean +/- 1 SD, P less than 0.005). In addition, in patients A1 and A2 a decrease in basal phosphorylation was observed and in patient A2 there was a rightward shift of the dose-response curve for insulin stimulation. These data and the correlation of coupling of receptor phosphorylation with the fractional occupancy of the receptor measured in the same extract suggest that these patients exhibit three types of defects. In patient A1, there is a loss in receptor number manifested by a parallel decrease in insulin binding and receptor phosphorylation. In patient A2, there is an additional decrease in the affinity constant leading to a decrease in both binding and receptor phosphorylation with an almost linear coupling between receptor occupancy and receptor phosphorylation.(ABSTRACT TRUNCATED AT 400 WORDS)
Beguinot, Kahn, Moses, and Smith. (1986) 1986. “The Development of Insulin Receptors and Responsiveness Is an Early Marker of Differentiation in the Muscle Cell Line L6”. Endocrinology 118 (1): 446-55. https://doi.org/10.1210/endo-118-1-446.
After reaching confluence, mononucleated L6 myoblasts fuse into multinucleated contracting myotubes. This process is accompanied by the synthesis of characteristic skeletal muscle proteins, such as myosin heavy chain and the MM isoenzyme of creatine kinase. We have studied the development of insulin receptors and insulin responsiveness during differentiation in the L6 cells. Insulin was bound to high affinity receptors in both myoblasts and differentiated myotubes. The binding showed characteristics typical for insulin binding in other cell types, including high affinity, appropriate specificity, an upwardly concave Scatchard plot, and down-regulation. In the logarithmic growth phase, the myoblasts exhibited a low level of insulin binding, but on initiation of cell fusion, the resulting myotubes progressively developed a 2-fold increase in specific [125I]iodoinsulin binding as a result of a 2-fold increase in receptor number. The increase in insulin binding was an early differentiation event, preceding the accumulation of creatine kinase by 24 h. The development of insulin binding during differentiation correlated closely with an increased ability of the hormone to stimulate maximal 2-deoxy-D-glucose and alpha-aminoisobutyric acid uptake at physiological concentrations. The L6 cells are a useful model for studying the binding and effects of physiological insulin concentrations in skeletal muscle before and after differentiation.
1985
Beguinot, Kahn, Moses, and Smith. 1985. “Distinct Biologically Active Receptors for Insulin, Insulin-Like Growth Factor I, and Insulin-Like Growth Factor II in Cultured Skeletal Muscle Cells”. J Biol Chem 260 (29): 15892-8.
The expression of insulin-like growth factor (IGF) receptors at the cell surface and the changes in IGF responsiveness during differentiation were studied in the L6 skeletal muscle cell line. Throughout the entire developmental sequence, distinct receptors for IGF I and IGF II that differed in structure and peptide specificity could be demonstrated. During differentiation, both 125I-IGF I and 125I-IGF II binding to the L6 cells decreased as a result of a 3-4-fold reduction in receptor number, whereas 125I-insulin binding increased. Under nonreducing conditions, disuccinimidyl suberate cross-linked 125I-IGF I and 125I-IGF II to two receptor complexes with apparent Mr greater than 300,000 (type I) and 220,000 (type II). Under reducing conditions, the apparent molecular weight of the type I receptor changed to Mr 130,000 (distinct from the 120,000 insulin receptor) and the type II receptor changed to 250,000. IGF I and IGF II both stimulated 2-deoxy-D-glucose and alpha-aminoisobutyric acid uptake in the L6 cells with a potency close to that of insulin, apparently through interaction with their own receptors. The stimulatory effects of IGF II correlated with its affinity for the type II but not the type I IGF receptor, as measured by inhibition of affinity labeling, whereas the effects of IGF I correlated with its ability to inhibit labeling of the type I receptor. In spite of the decrease in type I and type II receptor number, stimulation of 2-deoxy-glucose and alpha-aminoisobutyric acid uptake by the two IGFs increased during differentiation.
White, Maron, and Kahn. 1985. “Insulin Rapidly Stimulates Tyrosine Phosphorylation of a Mr-185,000 Protein in Intact Cells”. Nature 318 (6042): 183-6.
Phosphotyrosine-containing proteins are minor components of normal cells which appear to be associated primarily with the regulation of cellular metabolism and growth. The insulin receptor is a tyrosine-specific protein kinase, and one of the earliest detectable responses to insulin binding is activation of this kinase and autophosphorylation of its beta-subunit. Tyrosine autophosphorylation activates the phosphotransferase in the beta-subunit and increases its reactivity toward tyrosine phosphorylation of other substrates. When incubated in vitro with [gamma-32P]ATP and insulin, the purified insulin receptor phosphorylates various proteins on their tyrosine residues. However, so far no proteins other than the insulin receptor have been identified as undergoing tyrosine phosphorylation in response to insulin in an intact cell. Here, using anti-phosphotyrosine antibodies, we have identified a novel phosphotyrosine-containing protein of relative molecular mass (Mr) 185,000 (pp185) which appears during the initial response of hepatoma cells to insulin binding. In contrast to the insulin receptor, pp185 does not adhere to wheat-germ agglutininagarose or bind to anti-insulin receptor antibodies. Phosphorylation of pp185 is maximal within seconds after exposure of the cells to insulin and exhibits a dose-response curve similar to that of receptor autophosphorylation, suggesting that this protein represents the endogenous substrate for the insulin receptor kinase.
Jialal, Crettaz, Hachiya, Kahn, Moses, Buzney, and King. (1985) 1985. “Characterization of the Receptors for Insulin and the Insulin-Like Growth Factors on Micro- and Macrovascular Tissues”. Endocrinology 117 (3): 1222-9. https://doi.org/10.1210/endo-117-3-1222.
Insulin and insulin-like growth factors (IGFs) have been implicated in the pathogenesis of diabetic retinopathy and peripheral vascular complications. Previously, we have shown that retinal capillary endothelial cells responded to insulin and IGFs for metabolic and growth effects, whereas aortic endothelial cells were not responsive. In contrast, vascular supporting cells from both retinal capillaries (i.e. pericytes) and aorta (i.e. smooth muscle cells) responded equally to insulin, IGF-I, and IGF-II. The structure and ligand specificities of the receptor for these peptides were studied by covalently cross-linking 125I-labeled peptide hormones to their respective receptors using disuccinimidyl suberate, followed by polyacrylamide gel electrophoresis and autoradiography. The binding subunit of the insulin receptor, alpha-subunit, for all cell types was found to have a mol wt 145,000 under reduced conditions. Labeling of this band was inhibited by 10(-9) M insulin, antiinsulin receptor antibodies, and 10(-8) M IGF-I, but not by multiplication-stimulating activity (IGF-II). The beta-subunit of the insulin receptor in endothelial cells was identified by its ability to be autophosphorylated when stimulated by insulin and was found to have a mol wt of 99,000. Covalent cross-linking of IGF-I to its receptor revealed a mol wt of 145,000, similar to that of insulin receptor, except that IGF-I was 100-fold more potent than insulin in competing with [125I]IGF-I for binding. [125I]IGF-II in all cells was cross-linked to receptor with mol wt of 260,000 and 230,000 under reduced and nonreduced conditions, respectively. IGF-I competed weakly with [125I]IGF-II, whereas insulin was ineffective. [125I]IGF-II also bound to the band with alpha mol wt of 135,000, which was inhibited by insulin, IGF-I, and IGF-II. In summary, receptors for insulin, IGF-I, and IGF-II on cells from micro- and macrovessels are biochemically similar to those in other cells. Interestingly, the finding of large numbers of IGF-I and IGF-II receptors on endothelial cells suggests that these growth factors play a physiological role and are involved in vascular complications associated with diabetes.
White, Takayama, and Kahn. 1985. “Differences in the Sites of Phosphorylation of the Insulin Receptor in Vivo and in Vitro”. J Biol Chem 260 (16): 9470-8.
Phosphorylation of the insulin receptor was studied in intact well differentiated hepatoma cells (Fao) and in a solubilized and partially purified receptor preparation obtained from these cells by affinity chromatography on wheat germ agglutinin agarose. Tryptic peptides containing the phosphorylation sites of the beta-subunit of the insulin receptor were analyzed by reverse-phase high performance liquid chromatography. Phosphoamino acid content of these peptides was determined by acid hydrolysis and high voltage electrophoresis. Separation of the phosphopeptides from unstimulated Fao cells revealed one major and two minor phosphoserine-containing peptides and a single minor phosphothreonine-containing peptide. Insulin (10(-7) M) increased the phosphorylation of the beta-subunit of the insulin receptor 3- to 4-fold in the intact Fao cell. After insulin stimulation, two phosphotyrosine-containing peptides were identified. Tyrosine phosphorylation reached a steady state within 20 s after the addition of insulin and remained nearly constant for 1 h. Under our experimental conditions, no significant change in the amount of [32P]phosphoserine or [32P]phosphothreonine associated with the beta-subunit was found during the initial response of cells to insulin. When the insulin receptor was extracted from the Fao cells and incubated in vitro with [gamma-32P]ATP and Mn2+, very little phosphorylation occurred in the absence of insulin. In this preparation, insulin rapidly stimulated autophosphorylation of the receptor on tyrosine residues only and high performance liquid chromatography analysis of the beta-subunit digested with trypsin revealed one minor and two major phosphopeptides. The elution position of the minor peptide corresponded to that of the major phosphotyrosine-containing peptide obtained from the beta-subunit of the insulin-stimulated receptor labeled in vivo. In contrast, the elution position of one of the major phosphopeptides that occurred during in vitro phosphorylation corresponded to the minor phosphotyrosine-containing peptide phosphorylated in vivo. The other major in vitro phosphotyrosine-containing peptide was not detected in vivo. Our results indicate that: tyrosine phosphorylation of the insulin receptor occurs rapidly following insulin binding to intact cells; the level of tyrosine phosphorylation remains constant for up to 1 h; the specificity of the receptor kinase or accessibility of the phosphorylation sites are different in vivo and in vitro.(ABSTRACT TRUNCATED AT 400 WORDS)