Publications

2018

Altindis, Emrah, Weikang Cai, Masaji Sakaguchi, Fa Zhang, Wang GuoXiao, Fa Liu, Pierre De Meyts, et al. 2018. “Viral Insulin-Like Peptides Activate Human Insulin and IGF-1 Receptor Signaling: A Paradigm Shift for Host-Microbe Interactions”. Proc Natl Acad Sci U S A 115 (10): 2461-66. https://doi.org/10.1073/pnas.1721117115.
Viruses are the most abundant biological entities and carry a wide variety of genetic material, including the ability to encode host-like proteins. Here we show that viruses carry sequences with significant homology to several human peptide hormones including insulin, insulin-like growth factors (IGF)-1 and -2, FGF-19 and -21, endothelin-1, inhibin, adiponectin, and resistin. Among the strongest homologies were those for four viral insulin/IGF-1-like peptides (VILPs), each encoded by a different member of the family VILPs show up to 50% homology to human insulin/IGF-1, contain all critical cysteine residues, and are predicted to form similar 3D structures. Chemically synthesized VILPs can bind to human and murine IGF-1/insulin receptors and stimulate receptor autophosphorylation and downstream signaling. VILPs can also increase glucose uptake in adipocytes and stimulate the proliferation of fibroblasts, and injection of VILPs into mice significantly lowers blood glucose. Transfection of mouse hepatocytes with DNA encoding a VILP also stimulates insulin/IGF-1 signaling and DNA synthesis. Human microbiome studies reveal the presence of these in blood and fecal samples. Thus, VILPs are members of the insulin/IGF superfamily with the ability to be active on human and rodent cells, raising the possibility for a potential role of VILPs in human disease. Furthermore, since only 2% of viruses have been sequenced, this study raises the potential for discovery of other viral hormones which, along with known virally encoded growth factors, may modify human health and disease.
Kleinridders, Andre, Heather Ferris, Michelle Reyzer, Michaela Rath, Marion Soto, Lisa Manier, Jeffrey Spraggins, et al. 2018. “Regional Differences in Brain Glucose Metabolism Determined by Imaging Mass Spectrometry”. Mol Metab. https://doi.org/10.1016/j.molmet.2018.03.013.
OBJECTIVE: Glucose is the major energy substrate of the brain and crucial for normal brain function. In diabetes, the brain is subject to episodes of hypo- and hyperglycemia resulting in acute outcomes ranging from confusion to seizures, while chronic metabolic dysregulation puts patients at increased risk for depression and Alzheimer's disease. In the present study, we aimed to determine how glucose is metabolized in different regions of the brain using imaging mass spectrometry (IMS). METHODS: To examine the relative abundance of glucose and other metabolites in the brain, mouse brain sections were subjected to imaging mass spectrometry at a resolution of 100 μm. This was correlated with immunohistochemistry, qPCR, western blotting and enzyme assays of dissected brain regions to determine the relative contributions of the glycolytic and pentose phosphate pathways to regional glucose metabolism. RESULTS: In brain, there are significant regional differences in glucose metabolism, with low levels of hexose bisphosphate (a glycolytic intermediate) and high levels of the pentose phosphate pathway (PPP) enzyme glucose-6-phosphate dehydrogenase (G6PD) and PPP metabolite hexose phosphate in thalamus compared to cortex. The ratio of ATP to ADP is significantly higher in white matter tracts, such as corpus callosum, compared to less myelinated areas. While the brain is able to maintain normal ratios of hexose phosphate, hexose bisphosphate, ATP, and ADP during fasting, fasting causes a large increase in cortical and hippocampal lactate. CONCLUSION: These data demonstrate the importance of direct measurement of metabolic intermediates to determine regional differences in brain glucose metabolism and illustrate the strength of imaging mass spectrometry for investigating the impact of changing metabolic states on brain function at a regional level with high resolution.
Cai, Weikang, Chang Xue, Masaji Sakaguchi, Masahiro Konishi, Alireza Shirazian, Heather Ferris, Mengyao Li, et al. 2018. “Insulin Regulates Astrocyte Gliotransmission and Modulates Behavior”. J Clin Invest. https://doi.org/10.1172/JCI99366.
Complications of diabetes affect tissues throughout body, including central nervous system. Epidemiological studies show that diabetic patients have increased risk of depression, anxiety, age-related cognitive decline and Alzheimer's disease. Mice lacking insulin receptor in brain or on hypothalamic neurons display an array of metabolic abnormalities, however, the role of insulin action on astrocytes and neurobehaviors remains less well-studied. Here, we demonstrate that astrocytes are a direct insulin target in the brain and that knockout of IR on astrocytes causes increased anxiety and depressive-like behaviors in mice. This can be reproduced in part by deletion of IR on astrocytes in the nucleus accumbens. At a molecular level, loss of insulin signaling in astrocytes impaired tyrosine phosphorylation of Munc18c. This led to decreased exocytosis of ATP from astrocytes, resulting in decreased purinergic signaling on dopaminergic neurons. These reductions contributed to decreased dopamine release from brain slices. Central administration of ATP analogues could reverse depressive-like behaviors in mice with astrocyte IR knockout. Thus, astrocytic insulin signaling plays an important role in dopaminergic signaling, providing a potential mechanism by which astrocytic insulin action may contribute to increased rates of depression in people with diabetes, obesity and other insulin resistant states.
Soto, Marion, Lucie Orliaguet, Michelle Reyzer, Lisa Manier, Richard Caprioli, and C. Ronald Kahn. 2018. “Pyruvate Induces Torpor in Obese Mice”. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1717507115.
Mice subjected to cold or caloric deprivation can reduce body temperature and metabolic rate and enter a state of torpor. Here we show that administration of pyruvate, an energy-rich metabolic intermediate, can induce torpor in mice with diet-induced or genetic obesity. This is associated with marked hypothermia, decreased activity, and decreased metabolic rate. The drop in body temperature correlates with the degree of obesity and is blunted by housing mice at thermoneutrality. Induction of torpor by pyruvate in obese mice relies on adenosine signaling and is accompanied by changes in brain levels of hexose bisphosphate and GABA as detected by mass spectroscopy-based imaging. Pyruvate does not induce torpor in lean mice but results in the activation of brown adipose tissue (BAT) with an increase in the level of uncoupling protein-1 (UCP1). Denervation of BAT in lean mice blocks this increase in UCP1 and allows the pyruvate-induced torpor phenotype. Thus, pyruvate administration induces torpor in obese mice by pathways involving adenosine and GABA signaling and a failure of normal activation of BAT.

2017

Giles, Daniel, Maria Moreno-Fernandez, Traci Stankiewicz, Simon Graspeuntner, Monica Cappelletti, David Wu, Rajib Mukherjee, et al. (2017) 2017. “Thermoneutral Housing Exacerbates Nonalcoholic Fatty Liver Disease in Mice and Allows for Sex-Independent Disease Modeling”. Nat Med 23 (7): 829-38. https://doi.org/10.1038/nm.4346.
Nonalcoholic fatty liver disease (NAFLD), a common prelude to cirrhosis and hepatocellular carcinoma, is the most common chronic liver disease worldwide. Defining the molecular mechanisms underlying the pathogenesis of NAFLD has been hampered by a lack of animal models that closely recapitulate the severe end of the disease spectrum in humans, including bridging hepatic fibrosis. Here we demonstrate that a novel experimental model employing thermoneutral housing, as opposed to standard housing, resulted in lower stress-driven production of corticosterone, augmented mouse proinflammatory immune responses and markedly exacerbated high-fat diet (HFD)-induced NAFLD pathogenesis. Disease exacerbation at thermoneutrality was conserved across multiple mouse strains and was associated with augmented intestinal permeability, an altered microbiome and activation of inflammatory pathways that are associated with the disease in humans. Depletion of Gram-negative microbiota, hematopoietic cell deletion of Toll-like receptor 4 (TLR4) and inactivation of the IL-17 axis resulted in altered immune responsiveness and protection from thermoneutral-housing-driven NAFLD amplification. Finally, female mice, typically resistant to HFD-induced obesity and NAFLD, develop full disease characteristics at thermoneutrality. Thus, thermoneutral housing provides a sex-independent model of exacerbated NAFLD in mice and represents a novel approach for interrogation of the cellular and molecular mechanisms underlying disease pathogenesis.
Merry, Troy, Doreen Kuhlow, Beate Laube, Doris Pöhlmann, Andreas Pfeiffer, Ronald Kahn, Michael Ristow, and Kim Zarse. (2017) 2017. “Impairment of Insulin Signalling in Peripheral Tissue Fails to Extend Murine Lifespan”. Aging Cell 16 (4): 761-72. https://doi.org/10.1111/acel.12610.
Impaired insulin/IGF1 signalling has been shown to extend lifespan in model organisms ranging from yeast to mammals. Here we sought to determine the effect of targeted disruption of the insulin receptor (IR) in non-neuronal tissues of adult mice on the lifespan. We induced hemizygous (PerIRKO ) or homozygous (PerIRKO ) disruption of the IR in peripheral tissue of 15-weeks-old mice using a tamoxifen-inducible Cre transgenic mouse with only peripheral tissue expression, and subsequently monitored glucose metabolism, insulin signalling and spontaneous death rates over 4 years. Complete peripheral IR disruption resulted in a diabetic phenotype with increased blood glucose and plasma insulin levels in young mice. Although blood glucose levels returned to normal, and fat mass was reduced in aged PerIRKO mice, their lifespan was reduced. By contrast, heterozygous disruption had no effect on lifespan. This was despite young male PerIRKO mice showing reduced fat mass and mild increase in hepatic insulin sensitivity. In conflict with findings in metazoans like Caenorhabditis elegans and Drosophila melanogaster, our results suggest that heterozygous impairment of the insulin signalling limited to peripheral tissues of adult mice fails to extend lifespan despite increased systemic insulin sensitivity, while homozygous impairment shortens lifespan.
Wang, Häring, Rathjen, Lockhart, Sørensen, Ussar, Rasmussen, Bertagnolli, Kahn, and Rask-Madsen. 2017. “Insulin Resistance in Vascular Endothelial Cells Promotes Intestinal Tumour Formation”. Oncogene 36 (35): 4987-96. https://doi.org/10.1038/onc.2017.107.
The risk of several cancers, including colorectal cancer, is increased in patients with obesity and type 2 diabetes, conditions characterised by hyperinsulinaemia and insulin resistance. Because hyperinsulinaemia itself is an independent risk factor for cancer development, we examined tissue-specific insulin action in intestinal tumour formation. In vitro, insulin increased proliferation of intestinal tumour epithelial cells by almost two-fold in primary culture of tumour cells from Apc mice. Surprisingly, targeted deletion of insulin receptors in intestinal epithelial cells in Apc mice did not change intestinal tumour number or size distribution on either a low or high-fat diet. We therefore asked whether cells in the tumour stroma might explain the association between tumour formation and insulin resistance. To this end, we generated Apc mice with loss of insulin receptors in vascular endothelial cells. Strikingly, these mice had 42% more intestinal tumours than controls, no change in tumour angiogenesis, but increased expression of vascular cell adhesion molecule-1 (VCAM-1) in primary culture of tumour endothelial cells. Insulin decreased VCAM-1 expression and leukocyte adhesion in quiescent tumour endothelial cells with intact insulin receptors and partly prevented increases in VCAM-1 and leukocyte adhesion after treatment with tumour necrosis factor-α. Knockout of insulin receptors in endothelial cells also increased leukocyte adhesion in mesenteric venules and increased the frequency of neutrophils in tumours. We conclude that although insulin is mitogenic for intestinal tumour cells in vitro, impaired insulin action in the tumour microenvironment may be more important in conditions where hyperinsulinaemia is secondary to insulin resistance. Insulin resistance in tumour endothelial cells produces an activated, proinflammatory state that promotes tumorigenesis. Improvement of endothelial dysfunction may reduce colorectal cancer risk in patients with obesity and type 2 diabetes.