Publications by Year: 2004

2004

Kulkarni, Rohit, Ulupi Jhala, Jonathon Winnay, Stan Krajewski, Marc Montminy, and Ronald Kahn. (2004) 2004. “PDX-1 haploinsufficiency limits the compensatory islet hyperplasia that occurs in response to insulin resistance”. J Clin Invest 114 (6): 828-36. https://doi.org/10.1172/JCI21845.
Inadequate compensatory beta cell hyperplasia in insulin-resistant states triggers the development of overt diabetes. The mechanisms that underlie this crucial adaptive response are not fully defined. Here we show that the compensatory islet-growth response to insulin resistance in 2 models--insulin receptor (IR)/IR substrate-1 (IRS-1) double heterozygous mice and liver-specific IR KO (LIRKO) mice--is severely restricted by PDX-1 heterozygosity. Six-month-old IR/IRS-1 and LIRKO mice both showed up to a 10-fold increase in beta cell mass, which involved epithelial-to-mesenchymal transition. In both models, superimposition of PDX-1 haploinsufficiency upon the background of insulin resistance completely abrogated the adaptive islet hyperplastic response, and instead the beta cells showed apoptosis resulting in premature death of the mice. This study shows that, in postdevelopmental states of beta cell growth, PDX-1 is a critical regulator of beta cell replication and is required for the compensatory response to insulin resistance.
Bluher, Matthias, Mary-Elizabeth Patti, Stephane Gesta, Barbara Kahn, and Ronald Kahn. 2004. “Intrinsic heterogeneity in adipose tissue of fat-specific insulin receptor knock-out mice is associated with differences in patterns of gene expression”. J Biol Chem 279 (30): 31891-901. https://doi.org/10.1074/jbc.M404569200.
Mice with a fat-specific insulin receptor knock-out (FIRKO) have reduced adipose tissue mass, are protected against obesity, and have an extended life span. White adipose tissue of FIRKO mice is also characterized by a polarization into two major populations of adipocytes, one small (100 microm), which differ with regard to basal triglyceride synthesis and lipolysis, as well as in the expression of fatty acid synthase, sterol regulatory element-binding protein 1c, and CCAAT/enhancer-binding protein alpha (C/EBP-alpha). Gene expression analysis using RNA isolated from large and small adipocytes of FIRKO and control (IR lox/lox) mice was performed on oligonucleotide microarrays. Of the 12,488 genes/expressed sequence tags represented, 111 genes were expressed differentially in the four populations of adipocytes at the p
Cohen, Tseng, Michael, and Kahn. (2004) 2004. “Effects of insulin-sensitising agents in mice with hepatic insulin resistance”. Diabetologia 47 (3): 407-11. https://doi.org/10.1007/s00125-003-1320-4.
AIMS/HYPOTHESIS: The metabolic abnormalities of insulin resistance are ameliorated by insulin sensitisers via different mechanisms. Metformin decreases hepatic glucose output, whereas rosiglitazone (RSG) is an agonist for peroxisome proliferator activated receptor (PPAR)gamma, highly expressed in fat. To gain insight into the mechanisms of action of these drugs, we compared their actions in two models of insulin resistance: the obese, hyperglycaemic ob/ob mouse and the liver specific insulin receptor knockout (LIRKO) mouse. METHODS: Control, ob/ob, and LIRKO mice were divided into three groups that received metformin (300 mg/kg body weight/day), RSG (3 mg/kg body weight/day), or placebo for 3 weeks. RESULTS: In the presence of the severe hepatic insulin resistance of the LIRKO mouse, neither metformin nor RSG had any significant effect on glucose or insulin tolerance tests. On the other hand, RSG decreased serum concentrations of total cholesterol, LDL, and HDL in LIRKO mice. Adipocyte PPARgamma gene and protein expression, and adipocyte size were all increased in LIRKO mice treated with RSG, whereas fat-cell size in control animals was decreased by RSG. CONCLUSION/INTERPRETATION: TZDs probably improve some lipid parameters of the dysmetabolic syndrome associated with diabetes mellitus even in the presence of absolute hepatic insulin resistance, but both metformin and TZDs require an operating insulin signalling system in the liver for their effects in glucose homeostasis.
Mason, Steven, Richard Howlett, Matthew Kim, Mark Olfert, Michael Hogan, Wayne McNulty, Reed Hickey, et al. (2004) 2004. “Loss of skeletal muscle HIF-1alpha results in altered exercise endurance”. PLoS Biol 2 (10): e288. https://doi.org/10.1371/journal.pbio.0020288.
The physiological flux of oxygen is extreme in exercising skeletal muscle. Hypoxia is thus a critical parameter in muscle function, influencing production of ATP, utilization of energy-producing substrates, and manufacture of exhaustion-inducing metabolites. Glycolysis is the central source of anaerobic energy in animals, and this metabolic pathway is regulated under low-oxygen conditions by the transcription factor hypoxia-inducible factor 1alpha (HIF-1alpha). To determine the role of HIF-1alpha in regulating skeletal muscle function, we tissue-specifically deleted the gene encoding the factor in skeletal muscle. Significant exercise-induced changes in expression of genes are decreased or absent in the skeletal-muscle HIF-1alpha knockout mice (HIF-1alpha KOs); changes in activities of glycolytic enzymes are seen as well. There is an increase in activity of rate-limiting enzymes of the mitochondria in the muscles of HIF-1alpha KOs, indicating that the citric acid cycle and increased fatty acid oxidation may be compensating for decreased flow through the glycolytic pathway. This is corroborated by a finding of no significant decreases in muscle ATP, but significantly decreased amounts of lactate in the serum of exercising HIF-1alpha KOs. This metabolic shift away from glycolysis and toward oxidation has the consequence of increasing exercise times in the HIF-1alpha KOs. However, repeated exercise trials give rise to extensive muscle damage in HIF-1alpha KOs, ultimately resulting in greatly reduced exercise times relative to wild-type animals. The muscle damage seen is similar to that detected in humans in diseases caused by deficiencies in skeletal muscle glycogenolysis and glycolysis. Thus, these results demonstrate an important role for the HIF-1 pathway in the metabolic control of muscle function.
Kondo, Tatsuya, Ali Hafezi-Moghadam, Kennard Thomas, Denisa Wagner, and Ronald Kahn. 2004. “Mice lacking insulin or insulin-like growth factor 1 receptors in vascular endothelial cells maintain normal blood-brain barrier”. Biochem Biophys Res Commun 317 (2): 315-20. https://doi.org/10.1016/j.bbrc.2004.03.043.
The blood-brain barrier (BBB) is created by a combination of endothelial cells with tight junctions and astrocytes. One of the key tight junction proteins, zona occludens-1 (ZO-1), has been reported to be stimulated in its expression by insulin and IGF-1. To assess the role of insulin and IGF-1 in endothelial cells in the BBB we have utilized mice with a vascular endothelial cell-specific knockout of the insulin receptor (VENIRKO) and IGF-1 receptor (VENIFARKO). Both of these mice show a normal BBB based on no increase in leakage of Evans blue dye in the brain of these mice basally or after cold injury. Furthermore, the structural integrity of the BBB and blood-retinal barrier (BRB) was intact using the vascular markers lectin B-4 and ZO-1, and both proteins were properly co-localized in both brain and retinal vascular tissue of these mice. These observations indicate that neither insulin nor IGF-1 signaling in vascular endothelial cells is required for development and maintenance of BBB or BRB.
Kitamura, Tadahiro, Yukari Kitamura, Jun Nakae, Antonio Giordano, Saverio Cinti, Ronald Kahn, Argiris Efstratiadis, and Domenico Accili. (2004) 2004. “Mosaic analysis of insulin receptor function”. J Clin Invest 113 (2): 209-19. https://doi.org/10.1172/JCI17810.
Insulin promotes both metabolism and growth. However, it is unclear whether insulin-dependent growth is merely a result of its metabolic actions. Targeted ablation of insulin receptor (Insr) has not clarified this issue, because of early postnatal lethality. To examine this question, we generated mice with variable cellular mosaicism for null Insr alleles. Insr ablation in approximately 80% of cells caused extreme growth retardation, lipoatrophy, and hypoglycemia, a clinical constellation that resembles the human syndrome of leprechaunism. Insr ablation in 98% of cells, while resulting in similar growth retardation and lipoatrophy, caused diabetes without beta-cell hyperplasia. The growth retardation was associated with a greater than 60-fold increase in the expression of hepatic insulin-like growth factor binding protein-1. These findings indicate that insulin regulates growth independently of metabolism and that the number of insulin receptors is an important determinant of the specificity of insulin action.