Publications by Year: 2004

2004

Sajan, Mini, Mary Standaert, Atsushi Miura, Ron Kahn, and Robert Farese. (2004) 2004. “Tissue-specific differences in activation of atypical protein kinase C and protein kinase B in muscle, liver, and adipocytes of insulin receptor substrate-1 knockout mice”. Mol Endocrinol 18 (10): 2513-21. https://doi.org/10.1210/me.2004-0045.
Insulin receptor substrates (IRSs) 1 and 2 are postulated to control the activation of phosphatidylinositol 3-kinase (PI3K)-dependent signaling factors, namely, atypical protein kinase C (aPKC) and protein kinase B (PKB)/Akt, which mediate metabolic effects of insulin. However, it is uncertain whether aPKC and PKB are activated together or differentially in response to IRS-1 and IRS-2 activation in insulin-sensitive tissues. Presently, we examined insulin activation of aPKC and PKB in vastus lateralis muscle, adipocytes, and liver in wild-type and IRS-1 knockout mice, and observed striking tissue-specific differences. In muscle of IRS-1 knockout mice, the activation of both aPKC and PKB was markedly diminished. In marked contrast, only aPKC activation was diminished in adipocytes, and only PKB activation was diminished in liver. These results suggest that IRS-1 is required for: 1) activation of both aPKC and PKB in muscle; 2) aPKC, but not PKB, activation in adipocytes; and 3) PKB, but not aPKC, activation in liver. Presumably, IRS-2 or other PI3K activators account for the normal activation of aPKC in liver and PKB in adipocytes of IRS-1 knockout mice. These complexities in aPKC and PKB activation may be relevant to metabolic abnormalities seen in tissues in which IRS-1 or IRS-2 is specifically or predominantly down-regulated.
Nandi, Anindita, Yukari Kitamura, Ronald Kahn, and Domenico Accili. (2004) 2004. “Mouse models of insulin resistance”. Physiol Rev 84 (2): 623-47. https://doi.org/10.1152/physrev.00032.2003.
Insulin resistance plays a key role in the pathogenesis of several human diseases, including diabetes, obesity, hypertension, and cardiovascular diseases. The predisposition to insulin resistance results from genetic and environmental factors. The search for gene variants that predispose to insulin resistance has been thwarted by its genetically heterogeneous pathogenesis. However, using techniques of targeted mutagenesis and transgenesis in rodents, investigators have developed mouse models to test critical hypotheses on the pathogenesis of insulin resistance. Moreover, experimental crosses among mutant mice have shed light onto the polygenic nature of the interactions underlying this complex metabolic condition.
Cariou, Bertrand, Catherine Postic, Philippe Boudou, Remy Burcelin, Ronald Kahn, Jean Girard, Anne-Françoise Burnol, and Franck Mauvais-Jarvis. (2004) 2004. “Cellular and molecular mechanisms of adipose tissue plasticity in muscle insulin receptor knockout mice”. Endocrinology 145 (4): 1926-32. https://doi.org/10.1210/en.2003-0882.
White adipose tissue (WAT) plays a critical role in the development of insulin resistance via secretion of free fatty acids (FFA) and adipocytokines. Muscle-specific insulin receptor knockout (MIRKO) mice do not develop insulin resistance or diabetes under physiological conditions despite a marked increase in adiposity and plasma FFA. On the contrary, WAT of MIRKO is sensitized to insulin action during a euglycemic clamp, and WAT glucose utilization is dramatically increased. To get insight into the potential antidiabetic role of MIRKO adiposity, we have studied insulin action in WAT during a euglycemic, hyperinsulinemic clamp, and we have characterized the morphology and biology of WAT. During the clamp, there is no alteration in the expression or activation in the insulin signaling molecules involved in glucose transport through the phosphoinositide 3-kinase/Akt and CAP/Cbl pathways in WAT from MIRKO. The 53% increase in WAT mass results from a 48% increase in adipocyte number (P
Miura, Atsushi, Mini Sajan, Mary Standaert, Gautam Bandyopadhyay, Ronald Kahn, and Robert Farese. 2004. “Insulin substrates 1 and 2 are corequired for activation of atypical protein kinase C and Cbl-dependent phosphatidylinositol 3-kinase during insulin action in immortalized brown adipocytes”. Biochemistry 43 (49): 15503-9. https://doi.org/10.1021/bi049221y.
Phosphatidylinositol 3-kinase (PI3K)-dependent activation of atypical protein kinase C (aPKC) is required for insulin-stimulated glucose transport. Although insulin receptor substrate-1 (IRS-1) and IRS-2, among other factors, activate PI3K, there is little information on the relative roles of IRS-1and IRS-2 during aPKC activation by insulin action in specific cell types. Presently, we have used immortalized brown adipocytes in which either IRS-1 or IRS-2 has been knocked out by recombinant methods to examine IRS-1 and IRS-2 requirements for activation of aPKC. We have also used these adipocytes to see if IRS-1 and IRS-2 are required for activation of Cbl, which is required for insulin-stimulated glucose transport and has been found to function upstream of both PI3K/aPKC and Crk during thiazolidinedione action in 3T3/L1 adipocytes [Miura et al. (2003) Biochemistry 42, 14335]. In brown adipocytes in which either IRS-1 or IRS-2 was knocked out, insulin-induced increases in aPKC activity and glucose transport were markedly diminished. These effects of insulin on aPKC and glucose transport were fully restored by retroviral-mediated expression of IRS-1 or IRS-2 in their respective knockout cells. Knockout of IRS-1 or IRS-2 also inhibited insulin-induced increases in Cbl binding to the p85 subunit of PI3K, which, along with IRS-1/2, may be required for activation of PI3K, aPKC, and glucose transport during insulin action in 3T3/L1 adipocytes. These findings provide evidence that directly links both IRS-1 and IRS-2 to aPKC activation in immortalized brown adipocytes, and further suggest that IRS-1 and IRS-2 are required for the activation of Cbl/PI3K during insulin action in these cells.
Entingh-Pearsall, Amelia, and Ronald Kahn. 2004. “Differential roles of the insulin and insulin-like growth factor-I (IGF-I) receptors in response to insulin and IGF-I”. J Biol Chem 279 (36): 38016-24. https://doi.org/10.1074/jbc.M313201200.
Insulin and insulin-like growth factor-I (IGF-I) receptors are highly homologous tyrosine kinase receptors that share many common steps in their signaling pathways and have ligands that can bind to either receptor with differing affinities. To define precisely the signaling specific to the insulin receptor (IR) or the IGF-I receptor, we have generated brown preadipocyte cell lines that lack either receptor (insulin receptor knockout (IRKO) or insulin-like growth factor receptor knockout (IGFRKO)). Control preadipocytes expressed fewer insulin receptors than IGF-I receptors (20,000 versus 60,000), but during differentiation, insulin receptor levels increased so that mature adipocytes expressed slightly more insulin receptors than IGF-I receptors (120,000 versus 100,000). In these cells, insulin stimulated IR homodimer phosphorylation, whereas IGF-I activated both IGF-I receptor homodimers and hybrid receptors. Insulin-stimulated IRS-1 phosphorylation was significantly impaired in IRKO cells but was surprisingly elevated in IGFRKO cells. IRS-2 phosphorylation was unchanged in either cell line upon insulin stimulation. IGF-I-dependent phosphorylation of IRS-1 and IRS-2 was ablated in IGFRKO cells but not in IRKO cells. In control cells, both insulin and IGF-I produced a dose-dependent increase in phosphorylated Akt and MAPK, although IGF-I elicited a stronger response at an equivalent dose. In IRKO cells, the insulin-dependent increase in phospho-Akt was completely abolished at the lowest dose and reached only 20% of the control stimulation at 10 nm. Most interestingly, the response to IGF-I was also impaired at low doses, suggesting that IR is required for both insulin- and IGF-I-dependent phosphorylation of Akt. Most surprisingly, insulin- or IGF-I-dependent phosphorylation of MAPK was unaltered in either receptor-deficient cell line. Taken together, these results indicate that the insulin and IGF-I receptors contribute distinct signals to common downstream components in response to both insulin and IGF-I.
Goren, Joseph, Rohit Kulkarni, and Ronald Kahn. (2004) 2004. “Glucose Homeostasis and Tissue Transcript Content of Insulin Signaling Intermediates in Four Inbred Strains of Mice: C57BL 6, C57BLKS 6, DBA 2, and 129X1”. Endocrinology 145 (7): 3307-23. https://doi.org/10.1210/en.2003-1400.
Transgenic mice phenotypes generally depend on the background strains used in their creation. To examine the effects of genetic background on insulin signaling, we analyzed glucose homeostasis in four inbred strains of mice [C57BL/6 (B6), C57BLKS/6 (KLS), DBA/2 (DBA), and 129X1] and quantitated mRNA content of insulin receptor (IR) and its substrates in insulin-responsive tissues. At 2 months, the male B6 mouse is the least glucose-tolerant despite exhibiting similar insulin sensitivity and first-phase insulin secretion as the other strains. The 129X1 male mouse islet contains less insulin and exhibits a higher threshold for glucose-stimulated first-phase insulin secretion than the other strains. Female mice generally manifest better glucose tolerance than males, which is likely due to greater insulin sensitivity in liver and adipose tissue, a robust first-phase insulin secretion in B6 and KLS females, and improved insulin sensitivity in muscle in DBA and 129X1 females. At 6 months, although males exhibit improved first-phase insulin secretion, their physiology was relatively unchanged, whereas female B6 and KLS mice became less insulin sensitive. Gene expression of insulin signaling intermediates in insulin-responsive tissues was generally not strain dependent with the cell content of IR mRNA being highest. IR substrate (IRS)-1 and IRS-2 mRNA are ubiquitously expressed and IRS-3 and IRS-4 mRNA were detected in significant amounts in fat and brain tissues, respectively. These data indicate strain-, gender-, and age-dependent tissue sensitivity to insulin that is generally not associated with transcript content of IR or its substrates and should be taken into consideration during phenotypic characterization of transgenic mice.
Chen, Dong, Franck Mauvais-Jarvis, Matthias Bluher, Simon Fisher, Alison Jozsi, Laurie Goodyear, Kohjiro Ueki, and Ronald Kahn. (2004) 2004. “p50alpha/P55alpha/Phosphoinositide/3-Kinase/Knockout/Mice/Exhibit/Enhanced/Insulin/Sensitivity”. Mol Cell Biol 24 (1): 320-9.
Class Ia phosphoinositide (PI) 3-kinases are heterodimers composed of a regulatory and a catalytic subunit and are essential for the metabolic actions of insulin. In addition to p85alpha and p85beta, insulin-sensitive tissues such as fat, muscle, and liver express the splice variants of the pik3r1 gene, p50alpha and p55alpha. To define the role of these variants, we have created mice with a deletion of p50alpha and p55alpha by using homologous recombination. These mice are viable, grow normally, and maintain normal blood glucose levels but have lower fasting insulin levels. Results of an insulin tolerance test indicate that p50alpha/p55alpha knockout mice have enhanced insulin sensitivity in vivo, and there is an increase in insulin-stimulated glucose transport in isolated extensor digitorum longus muscle tissues and adipocytes. In muscle, loss of p50alpha/p55alpha results in reduced levels of insulin-stimulated insulin receptor substrate 1 (IRS-1) and phosphotyrosine-associated PI 3-kinase but enhanced levels of IRS-2-associated PI 3-kinase and Akt activation, whereas in adipocytes levels of both insulin-stimulated PI 3-kinase and Akt are unchanged. Despite this, adipocytes of the knockout mice are smaller and have increased glucose uptake with altered glucose metabolic pathways. When treated with gold thioglucose, p50alpha/p55alpha knockout mice become hyperphagic like their wild-type littermates. However, they accumulate less fat and become mildly less hyperglycemic and markedly less hyperinsulinemic. Taken together, these data indicate that p50alpha and p55alpha play an important role in insulin signaling and action, especially in lipid and glucose metabolism.
Almind, Katrine, and Ronald Kahn. (2004) 2004. “Genetic determinants of energy expenditure and insulin resistance in diet-induced obesity in mice”. Diabetes 53 (12): 3274-85.
Diet-induced obesity is the primary determinant of the current epidemic of diabetes. We have explored the role of genetics in this phenomenon, using C57Bl/6 (B6), 129S6/SvEvTac (129), and intercross (B6 x 129)F2 mice on a low- or high-fat diet. Over an 18-week period, B6 and F2 mice gained more weight, had higher levels of insulin and leptin, and showed greater glucose intolerance than 129 mice, despite lower food intake. By contrast, metabolic rate and diet-induced thermogenesis were significantly higher in the 129 mice. Genome-wide scans identified several quantitative trait loci, including a quantitative trait locus that was linked with hyperinsulinemia/insulin resistance on chromosome 14 in a region similar to that seen in mice with genetically induced insulin resistance. Microarray analysis indicated significant changes in expression levels between B6 and 129 mice in the identified chromosomal area of Wnt5a and protein kinase Cdelta (PKCdelta). Thus, caloric efficiency, i.e., the "thrifty gene," is a dominant-acting genetic determinant of diet-induced obesity in mice and can be linked to a locus on chromosome 14, including genes linked to adipose development and insulin sensitivity.
Ueki, Kohjiro, Tatsuya Kondo, Yu-Hua Tseng, and Ronald Kahn. 2004. “Central role of suppressors of cytokine signaling proteins in hepatic steatosis, insulin resistance, and the metabolic syndrome in the mouse”. Proc Natl Acad Sci U S A 101 (28): 10422-7. https://doi.org/10.1073/pnas.0402511101.
Insulin resistance, obesity, diabetes, dyslipidemia, and nonalcoholic fatty liver are components of the metabolic syndrome, a disease complex that is increasing at epidemic rates in westernized countries. Although proinflammatory cytokines have been suggested to contribute to the development of these disorders, the molecular mechanism is poorly understood. Here we show that overexpression of suppressors of cytokine signaling (SOCS)-1 and SOCS-3 in liver causes insulin resistance and an increase in the key regulator of fatty acid synthesis in liver, sterol regulatory element-binding protein (SREBP)-1c. Conversely, inhibition of SOCS-1 and -3 in obese diabetic mice improves insulin sensitivity, normalizes the increased expression of SREBP-1c, and dramatically ameliorates hepatic steatosis and hypertriglyceridemia. In obese animals, increased SOCS proteins enhance SREBP-1c expression by antagonizing STAT3-mediated inhibition of SREBP-1c promoter activity. Thus, SOCS proteins play an important role in pathogenesis of the metabolic syndrome by concordantly modulating insulin signaling and cytokine signaling.