Publications by Year: 2003

2003

Kulkarni, Rohit, Katrine Almind, Joseph Goren, Jonathon Winnay, Kohjiro Ueki, Terumasa Okada, and Ronald Kahn. (2003) 2003. “Impact of Genetic Background on Development of Hyperinsulinemia and Diabetes in Insulin Receptor/Insulin Receptor Substrate-1 Double Heterozygous Mice”. Diabetes 52 (6): 1528-34.
Type 2 diabetes is a complex disease in which genetic and environmental factors interact to produce alterations in insulin action and insulin secretion, leading to hyperglycemia. To evaluate the influence of genetic background on development of diabetes in a genetically susceptible host, we generated mice that are double heterozygous (DH) for knockout of the insulin receptor and insulin receptor substrate-1 on three genetic backgrounds (C57BL/6 [B6], 129Sv, and DBA). Although DH mice on all backgrounds showed insulin resistance, their phenotypes were dramatically different. B6 DH mice exhibited marked hyperinsulinemia and massive islet hyperplasia and developed early hyperglycemia, with 85% overtly diabetic by 6 months. By contrast, 129Sv DH mice showed mild hyperinsulinemia and minimal islet hyperplasia, and 2% developed diabetes. DBA mice had slower development of hyperglycemia, intermediate insulin levels, and evidence of islet degeneration, with 64% developing diabetes. Thus, mice carrying the same genetic defects on different backgrounds exhibited the full spectrum of abnormalities observed in humans with type 2 diabetes, which allowed for identification of potential loci that promote development of the diabetic phenotype.
Almind, Katrine, Rohit Kulkarni, Scott Lannon, and Ronald Kahn. (2003) 2003. “Identification of Interactive Loci Linked to Insulin and Leptin in Mice With Genetic Insulin Resistance”. Diabetes 52 (6): 1535-43.
Mice double heterozygous (DH) for deletion of insulin receptor and insulin receptor substrate-1 are lean, insulin resistant, and have a phenotype that strongly depends on the genetic background of the mouse. On the C57BL/6 (B6) background, DH mice develop marked hyperinsulinemia and diabetes, whereas on the 129S6 background, DH mice exhibit only mild elevations of insulin and remain free of diabetes. F2 male mice created by an intercross between these two strains exhibit a 60% incidence of diabetes and a bell-shaped distribution of insulin levels as related to glucose, reminiscent of that in humans with type 2 diabetes. These mice also exhibit a wide range of leptin levels as related to body weight. A genome-wide scan of F2 mice reveals a quantitative trait locus (QTL) related to hyperinsulinemia on chromosome 14 (D14Mit55) with a peak logarithm of odds (LOD) score of 5.6, accounting for up to 69% of this trait. A QTL with a LOD score of 3.7 related to hyperleptinemia is present on chromosome 7 at D12Mit38 (a marker previously assigned to chromosome 12) in the area of the uncoupling protein 2/3 gene cluster. This locus also interacts synergistically with D14Mit55 in development of hyperinsulinemia and with a QTL on chromosome 12 (D12Mit231) related to hyperglycemia. These data demonstrate how multiple genetic modifiers can interact and influence the development of diabetes and the phenotype of animals with genetically programmed insulin resistance and provide evidence as to the location and nature of these genes.
Magré, Jocelyne, Marc Delépine, Lionel Van Maldergem, Jean-Jacques Robert, Antonie Maassen, Muriel Meier, Vanessa Panz, et al. (2003) 2003. “Prevalence of Mutations in AGPAT2 Among Human Lipodystrophies”. Diabetes 52 (6): 1573-8.
Berardinelli-Seip congenital lipodystrophy (BSCL) is a heterogeneous genetic disease characterized by near absence of adipose tissue and severe insulin resistance. We have previously identified mutations in the seipin gene in a subset of our patients' cohort. Recently, disease-causing mutations in AGPAT2 have been reported in BSCL patients. In this study, we have performed mutation screening in AGPAT2 and the related AGPAT1 in patients with BSCL or other forms of lipodystrophy who have no detectable mutation in the seipin gene. We found 38 BSCL patients from 30 families with mutations in AGPAT2. Three of the known mutations were frequently found in our families. Of the eight new alterations, six are null mutations and two are missense mutations (Glu172Lys and Ala238Gly). All the patients harboring AGPAT2 mutations presented with typical features of BSCL. We did not find mutations in patients with other forms of lipodystrophies, including the syndromes of Lawrence, Dunnigan, and Barraquer-Simons, or with type A insulin resistance. In conclusion, mutations in the seipin gene and AGPAT2 are confined to the BSCL phenotype. Because we found mutations in 92 of the 94 BSCL patients studied, the seipin gene and AGPAT2 are the two major genes involved in the etiology of BSCL.
Jiang, Zhen, Zhiheng He, Benjamin King, Tatsuya Kuroki, Darren Opland, Kiyoshi Suzuma, Izumi Suzuma, et al. 2003. “Characterization of Multiple Signaling Pathways of Insulin in the Regulation of Vascular Endothelial Growth Factor Expression in Vascular Cells and Angiogenesis”. J Biol Chem 278 (34): 31964-71. https://doi.org/10.1074/jbc.M303314200.
The effects of insulin on vascular endothelial growth factor (VEGF) expression in cultured vascular cells and in angiogenesis were characterized. Insulin increased VEGF mRNA levels in mouse aortic smooth muscle cells from 10(-9) to 10(-7) m with an initial peak of 3.7-fold increases at 1 h and a second peak of 2.8-fold after 12 h. The first peak of VEGF expression was inhibited by LY294002, an inhibitor of phosphatidylinositol (PI) 3-kinase, and by the overexpression of dominant negative forms of p85 subunit of PI 3-kinase or Akt. Inhibitors of MEK kinase, PD98059, or overexpression of dominant negative forms of Ras was ineffective. In contrast, the chronic effect of insulin on VEGF expression was partially inhibited by both LY294002 or PD98059 as well as by the overexpression of dominant negatives of PI 3-kinase or Ras. The importance of PI 3-kinase-Akt pathway on VEGF expression was confirmed in mouse aortic smooth muscle cells isolated from insulin receptor substrate -1 knockout (IRS-1-/-) mice that showed parallel reductions of 46-49% in insulin-stimulated VEGF expression and PI 3-kinase-Akt activation. Insulin-induced activation of PI 3-kinase-Akt on hypoxia-induced VEGF expression and neovascularization was reduced by 40% in the retina of neonatal hypoxia model using IRS-1-/- mice. Thus, unlike other cells, insulin can regulate VEGF expression by both IRS-1/PI 3-kinase-Akt cascade and Ras-MAPK pathways in aortic smooth muscle cells. The in vivo results provide direct evidence that insulin can modulate hypoxia-induced angiogenesis via reduction in VEGF expression in vivo.
Kahn, Ronald. 2003. “Knockout Mice Challenge Our Concepts of Glucose Homeostasis and the Pathogenesis of Diabetes”. Exp Diabesity Res 4 (3): 169-82. https://doi.org/10.1155/EDR.2003.169.
A central component of type 2 diabetes and the metabolic syndrome is insulin resistance. Insulin exerts a multifaceted and highly integrated series of actions via its intracellular signaling systems. Generation of mice carrying null mutations of the genes encoding proteins in the insulin signaling pathway provides a unique approach to determining the role of individual proteins in the molecular mechanism of insulin action and the pathogenesis of insulin resistance and diabetes. The role of the four major insulin receptor substrates (IRS1-4) in insulin and IGF-1 signaling have been examined by creating mice with targeted gene knockouts. Each produces a unique phenotype, indicating the complementary role of these signaling components. Combined heterozygous defects often produce synergistic or epistatic effects, although the final severity of the phenotype depends on the genetic background of the mice. Conditional knockouts of the insulin receptor have also been created using the Cre-lox system. These tissue specific knockouts have provide unique insights into the control of glucose homeostasis and the pathogenesis of type 2 diabetes, and have led to development of new hypotheses about the nature of the insulin action and development of diabetes.
Entingh, Amelia, Cullen Taniguchi, and Ronald Kahn. 2003. “Bi-Directional Regulation of Brown Fat Adipogenesis by the Insulin Receptor”. J Biol Chem 278 (35): 33377-83. https://doi.org/10.1074/jbc.M303056200.
Insulin is a potent inducer of adipogenesis, and differentiation of adipocytes requires many components of the insulin signaling pathway, including the insulin receptor substrate IRS-1 and phosphatidylinositol 3-kinase (PI3K). Brown pre-adipocytes in culture exhibit low levels of insulin receptor (IR), and during differentiation there is both an increase in total IR levels and a shift in the alternatively spliced forms of IR from the A isoform (-exon 11) to the B isoform (+exon 11). Brown pre-adipocyte cell lines from insulin receptor-deficient mice exhibit dramatically impaired differentiation and an inability to regulate alternative splicing of the insulin receptor. Surprisingly, re-expression of either splice isoform of IR in the IR-deficient cells fails to rescue differentiation in these cells. Likewise, overexpression of IR in control IRlox cells also results in inhibition of differentiation and a failure to accumulate expression of the adipogenic markers peroxisome proliferator-activated receptor gamma, Glut4, and fatty acid synthase, although cells overexpressing IR retain the ability to activate PI3K and down-regulate mitogen-activated protein kinase (MAPK) phosphorylation. Thus, differentiation of brown adipocytes requires a timed and regulated expression of IR, and either the absence or overabundance of insulin receptors in these cells dramatically inhibits differentiation.
Kondo, Tatsuya, David Vicent, Kiyoshi Suzuma, Masashi Yanagisawa, George King, Martin Holzenberger, and Ronald Kahn. (2003) 2003. “Knockout of Insulin and IGF-1 Receptors on Vascular Endothelial Cells Protects Against Retinal Neovascularization”. J Clin Invest 111 (12): 1835-42. https://doi.org/10.1172/JCI17455.
Both insulin and IGF-1 have been implicated in control of retinal endothelial cell growth, neovascularization, and diabetic retinopathy. To precisely define the role of insulin and IGF-1 signaling in endothelium in these processes, we have used the oxygen-induced retinopathy model to study mice with a vascular endothelial cell-specific knockout of the insulin receptor (VENIRKO) or IGF-1 receptor (VENIFARKO). Following relative hypoxia, VENIRKO mice show a 57% decrease in retinal neovascularization as compared with controls. This is associated with a blunted rise in VEGF, eNOS, and endothelin-1. By contrast, VENIFARKO mice show only a 34% reduction in neovascularization and a very modest reduction in mediator generation. These data indicate that both insulin and IGF-1 signaling in endothelium play a role in retinal neovascularization through the expression of vascular mediators, with the effect of insulin being most important in this process.
The painstaking process of generating constitutive and conditional knockout mice has paid off handsomely. The roles of the insulin receptor and its intracellular substrates in insulin action has been established and begun to shed light onto some of the proteins less obvious functions. We have learned how genetic predisposition plays itself out in the oligogenic and heterogeneous pathogenesis of type 2 diabetes and how the balance of proteins can affect the efficiency of signaling both positively and negatively. The IRS knockout mice have taught us how these proteins provide unique and complementary signals in insulin action. From the tissue specific knockouts we have learned that [figure: see text] different tissues contribute uniquely to the pathogenesis of type 2 diabetes, but not always in the predicted way; that insulin resistance at different levels in the same tissue may produce different phenotypes; that tissues possess mechanisms of communication such that resistance in one tissue affects insulin signaling or metabolism in others; and that insulin has important effects in tissues not previously considered insulin responsive, including the brain and beta-cells. The result of this work has led us to develop new hypotheses about the nature of the insulin action network.
Patti, Mary Elizabeth, Atul Butte, Sarah Crunkhorn, Kenneth Cusi, Rachele Berria, Sangeeta Kashyap, Yoshinori Miyazaki, et al. 2003. “Coordinated Reduction of Genes of Oxidative Metabolism in Humans With Insulin Resistance and Diabetes: Potential Role of PGC1 and NRF1”. Proc Natl Acad Sci U S A 100 (14): 8466-71. https://doi.org/10.1073/pnas.1032913100.
Type 2 diabetes mellitus (DM) is characterized by insulin resistance and pancreatic beta cell dysfunction. In high-risk subjects, the earliest detectable abnormality is insulin resistance in skeletal muscle. Impaired insulin-mediated signaling, gene expression, glycogen synthesis, and accumulation of intramyocellular triglycerides have all been linked with insulin resistance, but no specific defect responsible for insulin resistance and DM has been identified in humans. To identify genes potentially important in the pathogenesis of DM, we analyzed gene expression in skeletal muscle from healthy metabolically characterized nondiabetic (family history negative and positive for DM) and diabetic Mexican-American subjects. We demonstrate that insulin resistance and DM associate with reduced expression of multiple nuclear respiratory factor-1 (NRF-1)-dependent genes encoding key enzymes in oxidative metabolism and mitochondrial function. Although NRF-1 expression is decreased only in diabetic subjects, expression of both PPAR gamma coactivator 1-alpha and-beta (PGC1-alpha/PPARGC1 and PGC1-beta/PERC), coactivators of NRF-1 and PPAR gamma-dependent transcription, is decreased in both diabetic subjects and family history-positive nondiabetic subjects. Decreased PGC1 expression may be responsible for decreased expression of NRF-dependent genes, leading to the metabolic disturbances characteristic of insulin resistance and DM.
Wolfrum, Christian, David Shih, Satoru Kuwajima, Andrew Norris, Ronald Kahn, and Markus Stoffel. (2003) 2003. “Role of Foxa-2 in Adipocyte Metabolism and Differentiation”. J Clin Invest 112 (3): 345-56. https://doi.org/10.1172/JCI18698.
Hepatocyte nuclear factors-3 (Foxa-1-3) are winged forkhead transcription factors that regulate gene expression in the liver and pancreatic islets and are required for normal metabolism. Here we show that Foxa-2 is expressed in preadipocytes and induced de novo in adipocytes of genetic and diet-induced rodent models of obesity. In preadipocytes Foxa-2 inhibits adipocyte differentiation by activating transcription of the Pref-1 gene. Foxa-2 and Pref-1 expression can be enhanced in primary preadipocytes by growth hormone, suggesting that the antiadipogenic activity of growth hormone is mediated by Foxa-2. In differentiated adipocytes Foxa-2 expression leads to induction of gene expression involved in glucose and fat metabolism, including glucose transporter-4, hexokinase-2, muscle-pyruvate kinase, hormone-sensitive lipase, and uncoupling proteins-2 and -3. Diet-induced obese mice with haploinsufficiency in Foxa-2 (Foxa-2+/-) develop increased adiposity compared with wild-type littermates as a result of decreased energy expenditure. Furthermore, adipocytes of these Foxa-2+/- mice exhibit defects in glucose uptake and metabolism. These data suggest that Foxa-2 plays an important role as a physiological regulator of adipocyte differentiation and metabolism.