Publications by Year: 2002

2002

Bluher, Matthias, Dodson Michael, Odile Peroni, Kohjiro Ueki, Nathan Carter, Barbara Kahn, and Ronald Kahn. (2002) 2002. “Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance”. Dev Cell 3 (1): 25-38.
Insulin signaling in adipose tissue plays an important role in lipid storage and regulation of glucose homeostasis. Using the Cre-loxP system, we created mice with fat-specific disruption of the insulin receptor gene (FIRKO mice). These mice have low fat mass, loss of the normal relationship between plasma leptin and body weight, and are protected against age-related and hypothalamic lesion-induced obesity, and obesity-related glucose intolerance. FIRKO mice also exhibit polarization of adipocytes into populations of large and small cells, which differ in expression of fatty acid synthase, C/EBP alpha, and SREBP-1. Thus, insulin signaling in adipocytes is critical for development of obesity and its associated metabolic abnormalities, and abrogation of insulin signaling in fat unmasks a heterogeneity in adipocyte response in terms of gene expression and triglyceride storage.
Belke, Darrell, Sandrine Betuing, Martin Tuttle, Christophe Graveleau, Martin Young, Mark Pham, Dongfang Zhang, et al. (2002) 2002. “Insulin signaling coordinately regulates cardiac size, metabolism, and contractile protein isoform expression”. J Clin Invest 109 (5): 629-39. https://doi.org/10.1172/JCI13946.
To investigate the role of insulin signaling on postnatal cardiac development, physiology, and cardiac metabolism, we generated mice with a cardiomyocyte-selective insulin receptor knockout (CIRKO) using cre/loxP recombination. Hearts of CIRKO mice were reduced in size by 20-30% due to reduced cardiomyocyte size and had persistent expression of the fetal beta-myosin heavy chain isoform. In CIRKO hearts, glucose transporter 1 (GLUT1) expression was reduced by about 50%, but there was a twofold increase in GLUT4 expression as well as increased rates of cardiac glucose uptake in vivo and increased glycolysis in isolated working hearts. Fatty acid oxidation rates were diminished as a result of reduced expression of enzymes that catalyze mitochondrial beta-oxidation. Although basal rates of glucose oxidation were reduced, insulin unexpectedly stimulated glucose oxidation and glycogenolysis in CIRKO hearts. Cardiac performance in vivo and in isolated hearts was mildly impaired. Thus, insulin signaling plays an important developmental role in regulating postnatal cardiac size, myosin isoform expression, and the switching of cardiac substrate utilization from glucose to fatty acids. Insulin may also modulate cardiac myocyte metabolism through paracrine mechanisms by activating insulin receptors in other cell types within the heart.