Publications by Year: 2000

2000

Kido, Burks, Withers, Brüning, Kahn, White, and Accili. (2000) 2000. “Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2”. J Clin Invest 105 (2): 199-205. https://doi.org/10.1172/JCI7917.
Type 2 diabetes is characterized by abnormalities of insulin action in muscle, adipose tissue, and liver and by altered beta-cell function. To analyze the role of the insulin signaling pathway in these processes, we have generated mice with combined heterozygous null mutations in insulin receptor (ir), insulin receptor substrate (irs-1), and/or irs-2. Diabetes developed in 40% of ir/irs-1/irs-2(+/-), 20% of ir/irs-1(+/-), 17% of ir/irs-2(+/-), and 5% of ir(+/-) mice. Although combined heterozygosity for ir/irs-1(+/-) and ir/irs-2(+/-) results in a similar number of diabetic mice, there are significant differences in the underlying metabolic abnormalities. ir/irs-1(+/-) mice develop severe insulin resistance in skeletal muscle and liver, with compensatory beta-cell hyperplasia. In contrast, ir/irs-2(+/-) mice develop severe insulin resistance in liver, mild insulin resistance in skeletal muscle, and modest beta-cell hyperplasia. Triple heterozygotes develop severe insulin resistance in skeletal muscle and liver and marked beta-cell hyperplasia. These data indicate tissue-specific differences in the roles of IRSs to mediate insulin action, with irs-1 playing a prominent role in skeletal muscle and irs-2 in liver. They also provide a practical demonstration of the polygenic and genetically heterogeneous interactions underlying the inheritance of type 2 diabetes.
Mauvais-Jarvis, Virkamaki, Michael, Winnay, Zisman, Kulkarni, and Kahn. (2000) 2000. “A model to explore the interaction between muscle insulin resistance and beta-cell dysfunction in the development of type 2 diabetes”. Diabetes 49 (12): 2126-34.
Type 2 diabetes is a polygenic disease characterized by defects in both insulin secretion and insulin action. We have previously reported that isolated insulin resistance in muscle by a tissue-specific insulin receptor knockout (MIRKO mouse) is not sufficient to alter glucose homeostasis, whereas beta-cell-specific insulin receptor knockout (betaIRKO) mice manifest severe progressive glucose intolerance due to loss of glucose-stimulated acute-phase insulin release. To explore the interaction between insulin resistance in muscle and altered insulin secretion, we created a double tissue-specific insulin receptor knockout in these tissues. Surprisingly, betaIRKO-MIRKO mice show an improvement rather than a deterioration of glucose tolerance when compared to betaIRKO mice. This is due to improved glucose-stimulated acute insulin release and redistribution of substrates with increased glucose uptake in adipose tissue and liver in vivo, without a significant decrease in muscle glucose uptake. Thus, insulin resistance in muscle leads to improved glucose-stimulated first-phase insulin secretion from beta-cells and shunting of substrates to nonmuscle tissues, collectively leading to improved glucose tolerance. These data suggest that muscle, either via changes in substrate availability or by acting as an endocrine tissue, communicates with and regulates insulin sensitivity in other tissues.
Aspinwall, Qian, Roper, Kulkarni, Kahn, and Kennedy. 2000. “Roles of insulin receptor substrate-1, phosphatidylinositol 3-kinase, and release of intracellular Ca2+ stores in insulin-stimulated insulin secretion in beta -cells”. J Biol Chem 275 (29): 22331-8. https://doi.org/10.1074/jbc.M909647199.
The signaling pathway by which insulin stimulates insulin secretion and increases in intracellular free Ca(2+) concentration ([Ca(2+)](i)) in isolated mouse pancreatic beta-cells and clonal beta-cells was investigated. Application of insulin to single beta-cells resulted in increases in [Ca(2+)](i) that were of lower magnitude, slower onset, and longer lifetime than that observed with stimulation with tolbutamide. Furthermore, the increases in [Ca(2+)](i) originated from interior regions of the cell rather than from the plasma membrane as with depolarizing stimuli. The insulin-induced [Ca(2+)](i) changes and insulin secretion at single beta-cells were abolished by treatment with 100 nm wortmannin or 1 micrometer thapsigargin; however, they were unaffected by 10 micrometer U73122, 20 micrometer nifedipine, or removal of Ca(2+) from the medium. Insulin-stimulated insulin secretion was also abolished by treatment with 2 micrometer bisindolylmaleimide I, but [Ca(2+)](i) changes were unaffected. In an insulin receptor substrate-1 gene disrupted beta-cell tumor line, insulin did not evoke either [Ca(2+)](i) changes or insulin secretion. The data suggest that autocrine-activated increases in [Ca(2+)](i) are due to release of intracellular Ca(2+) stores, especially the endoplasmic reticulum, mediated by insulin receptor substrate-1 and phosphatidylinositol 3-kinase. Autocrine activation of insulin secretion is mediated by the increase in [Ca(2+)](i) and activation of protein kinase C.
Michael, Kulkarni, Postic, Previs, Shulman, Magnuson, and Kahn. (2000) 2000. “Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction”. Mol Cell 6 (1): 87-97.
The liver plays a central role in the control of glucose homeostasis and is subject to complex regulation by substrates, insulin, and other hormones. To investigate the effect of the loss of direct insulin action in liver, we have used the Cre-loxP system to inactivate the insulin receptor gene in hepatocytes. Liver-specific insulin receptor knockout (LIRKO) mice exhibit dramatic insulin resistance, severe glucose intolerance, and a failure of insulin to suppress hepatic glucose production and to regulate hepatic gene expression. These alterations are paralleled by marked hyperinsulinemia due to a combination of increased insulin secretion and decreased insulin clearance. With aging, the LIRKO liver exhibits morphological and functional changes, and the metabolic phenotype becomes less severe. Thus, insulin signaling in liver is critical in regulating glucose homeostasis and maintaining normal hepatic function.
Winnay, Brüning, Burks, and Kahn. 2000. “Gab-1-mediated IGF-1 signaling in IRS-1-deficient 3T3 fibroblasts”. J Biol Chem 275 (14): 10545-50.
The insulin receptor substrate (IRS) family of proteins mediate a variety of intracellular signaling events by serving as signaling platforms downstream of several receptor tyrosine kinases including the insulin and insulin-like growth factor-1 (IGF-1) receptors. Recently, several new members of this family have been identified including IRS-3, IRS-4, and growth factor receptor-binding protein 2-associated binder-1 (Gab-1). 3T3 cell lines derived from IRS-1-deficient embryos exhibit a 70-80% reduction in IGF-1-stimulated S-phase entry and a parallel decrease in the induction of the immediate-early genes c-fos and egr-1 but unaltered activation of the mitogen-activated protein kinases extracellular signal-regulated kinase-1 and extracellular signal-regulated kinase-2. Reconstitution of IRS-1 expression in IRS-1-deficient fibroblasts by retroviral mediated gene transduction is capable of restoring these defects. Overexpression of Gab-1 in IRS-1-deficient fibroblasts also results in the restoration of egr-1 induction to levels similar to those achieved by IRS-1 reconstitution and markedly increases IGF-1-stimulated S-phase progression. Gab-1 is capable of regulating these biological end points despite the absence of IGF-1 stimulated tyrosine phosphorylation. These data provide evidence that Gab-1 may serve as a unique signaling intermediate in insulin/IGF-1 signaling for induction of early gene expression and stimulation of mitogenesis without direct tyrosine phosphorylation.
Fruman, Mauvais-Jarvis, Pollard, Yballe, Brazil, Bronson, Kahn, and Cantley. (2000) 2000. “Hypoglycaemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p85 alpha”. Nat Genet 26 (3): 379-82. https://doi.org/10.1038/81715.
Phosphoinositide 3-kinases produce 3'-phosphorylated phosphoinositides that act as second messengers to recruit other signalling proteins to the membrane. Pi3ks are activated by many extracellular stimuli and have been implicated in a variety of cellular responses. The Pi3k gene family is complex and the physiological roles of different classes and isoforms are not clear. The gene Pik3r1 encodes three proteins (p85 alpha, p55 alpha and p50 alpha) that serve as regulatory subunits of class IA Pi3ks (ref. 2). Mice lacking only the p85 alpha isoform are viable but display hypoglycaemia and increased insulin sensitivity correlating with upregulation of the p55 alpha and p50 alpha variants. Here we report that loss of all protein products of Pik3r1 results in perinatal lethality. We observed, among other abnormalities, extensive hepatocyte necrosis and chylous ascites. We also noted enlarged skeletal muscle fibres, brown fat necrosis and calcification of cardiac tissue. In liver and muscle, loss of the major regulatory isoform caused a great decrease in expression and activity of class IA Pi3k catalytic subunits; nevertheless, homozygous mice still displayed hypoglycaemia, lower insulin levels and increased glucose tolerance. Our findings reveal that p55 alpha and/or p50 alpha are required for survival, but not for development of hypoglycaemia, in mice lacking p85 alpha.
Zisman, Peroni, Abel, Michael, Mauvais-Jarvis, Lowell, Wojtaszewski, et al. (2000) 2000. “Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance”. Nat Med 6 (8): 924-8. https://doi.org/10.1038/78693.
The prevalence of type 2 diabetes mellitus is growing worldwide. By the year 2020, 250 million people will be afflicted. Most forms of type 2 diabetes are polygenic with complex inheritance patterns, and penetrance is strongly influenced by environmental factors. The specific genes involved are not yet known, but impaired glucose uptake in skeletal muscle is an early, genetically determined defect that is present in non-diabetic relatives of diabetic subjects. The rate-limiting step in muscle glucose use is the transmembrane transport of glucose mediated by glucose transporter (GLUT) 4 (ref. 4), which is expressed mainly in skeletal muscle, heart and adipose tissue. GLUT4 mediates glucose transport stimulated by insulin and contraction/exercise. The importance of GLUT4 and glucose uptake in muscle, however, was challenged by two recent observations. Whereas heterozygous GLUT4 knockout mice show moderate glucose intolerance, homozygous whole-body GLUT4 knockout (GLUT4-null) mice have only mild perturbations in glucose homeostasis and have growth retardation, depletion of fat stores, cardiac hypertrophy and failure, and a shortened life span. Moreover, muscle-specific inactivation of the insulin receptor results in minimal, if any, change in glucose tolerance. To determine the importance of glucose uptake into muscle for glucose homeostasis, we disrupted GLUT4 selectively in mouse muscles. A profound reduction in basal glucose transport and near-absence of stimulation by insulin or contraction resulted. These mice showed severe insulin resistance and glucose intolerance from an early age. Thus, GLUT4-mediated glucose transport in muscle is essential to the maintenance of normal glucose homeostasis.
Goldfine, AB, Patti, Zuberi, Goldstein, LeBlanc, Landaker, Jiang, Willsky, and Kahn. (2000) 2000. “Metabolic effects of vanadyl sulfate in humans with non-insulin-dependent diabetes mellitus: in vivo and in vitro studies”. Metabolism 49 (3): 400-10.
To investigate the efficacy and mechanism of action of vanadium salts as oral hypoglycemic agents, 16 type 2 diabetic patients were studied before and after 6 weeks of vanadyl sulfate (VOSO4) treatment at three doses. Glucose metabolism during a euglycemic insulin clamp did not increase at 75 mg/d, but improved in 3 of 5 subjects receiving 150 mg VOSO4 and 4 of 8 subjects receiving 300 mg VOSO4. Basal hepatic glucose production (HGP) and suppression of HGP by insulin were unchanged at all doses. Fasting glucose and hemoglobin A1c (HbA1c) decreased significantly in the 150- and 300-mg VOSO4 groups. At the highest dose, total cholesterol decreased, associated with a decrease in high-density lipoprotein (HDL). There was no change in systolic, diastolic, or mean arterial blood pressure on 24-hour ambulatory monitors at any dose. There was no apparent correlation between the clinical response and peak serum level of vanadium. The 150- and 300-mg vanadyl doses caused some gastrointestinal intolerance but did not increase tissue oxidative stress as assessed by thiobarbituric acid-reactive substances (TBARS). In muscle obtained during clamp studies prior to vanadium therapy, insulin stimulated the tyrosine phosphorylation of the insulin receptor, insulin receptor substrate-1 (IRS-1), and Shc proteins by 2- to 3-fold, while phosphatidylinositol 3-kinase (PI 3-kinase) activity associated with IRS-1 increased 4.7-fold during insulin stimulation (P = .02). Following vanadium, there was a consistent trend for increased basal levels of insulin receptor, Shc, and IRS-1 protein tyrosine phosphorylation and IRS-1-associated PI 3-kinase, but no further increase with insulin. There was no discernible correlation between tyrosine phosphorylation patterns and glucose disposal responses to vanadyl. While glycogen synthase fractional activity increased 1.5-fold following insulin infusion, there was no change in basal or insulin-stimulated activity after vanadyl. There was no increase in the protein phosphatase activity of muscle homogenates to exogenous substrate after vanadyl. Vanadyl sulfate appears safe at these doses for 6 weeks, but at the tolerated doses, it does not dramatically improve insulin sensitivity or glycemic control. Vanadyl modifies proteins in human skeletal muscle involved in early insulin signaling, including basal insulin receptor and substrate tyrosine phosphorylation and activation of PI 3-kinase, and is not additive or synergistic with insulin at these steps. Vanadyl sulfate does not modify the action of insulin to stimulate glycogen synthesis. Since glucose utilization is improved in some patients, vanadyl must also act at other steps of insulin action.