Publications by Year: 2000

2000

Kahn, Brüning, Michael, and Kulkarni. (2000) 2000. “Knockout Mice Challenge Our Concepts of Glucose Homeostasis and the Pathogenesis of Diabetes Mellitus”. J Pediatr Endocrinol Metab 13 Suppl 6: 1377-84.
The failure of insulin to stimulate muscle glucose uptake and suppress hepatic glucose production represents two of the fundamental pathophysiologic lesions in type 2 diabetes mellitus (DM). Defining insulin action at the molecular level, therefore, provides the critical background against which to elucidate the mechanisms of insulin resistance that underlie type 2 DM, obesity and many other disorders. Over the past two decades substantial progress has been made in identifying many of the molecular mechanisms involved in insulin signaling. Much of this progress has been due to the use of homologous recombinant gene targeting. The present review examines the various insights that have been provided by studies of knockout mice strains. Taken together, the results present the possibility of a unifying hypothesis for type 2 DM, in which insulin resistance in the beta-cell synergizes with insulin resistance in the periphery to produce the two classic defects of this disease: relative hypoinsulinemia and peripheral insulin resistance.
The development of type 2 diabetes is linked to insulin resistance coupled with a failure of pancreatic B-cells to compensate by adequate insulin secretion. Here, we review studies obtained from genetically engineered mice that have helped dissect the pathophysiology of this disease. Transgenic/knockout models with monogenic impairment in insulin action and insulin secretion have highlighted potential molecular mechanisms for insulin resistance and suggested a mechanism for the development of MODY in humans. Polygenic models have strengthened the idea that minor defects in insulin secretion and insulin action, when combined, can lead to diabetes, pointing out the importance of interactions of different genetic loci in the production of diabetes. Tissue-specific knockouts of the insulin receptor have challenged current concepts on the regulation of glucose homeostasis and have highlighted the importance of insulin action in pancreatic B-cells and brain. The impact of the genetic background on insulin action, insulin secretion and the incidence of diabetes is also evident in these models. These findings highlight potential new therapeutic targets in the treatment of type 2 diabetes.
Mauvais-Jarvis, Virkamaki, Michael, Winnay, Zisman, Kulkarni, and Kahn. (2000) 2000. “A Model to Explore the Interaction Between Muscle Insulin Resistance and Beta-Cell Dysfunction in the Development of Type 2 Diabetes”. Diabetes 49 (12): 2126-34.
Type 2 diabetes is a polygenic disease characterized by defects in both insulin secretion and insulin action. We have previously reported that isolated insulin resistance in muscle by a tissue-specific insulin receptor knockout (MIRKO mouse) is not sufficient to alter glucose homeostasis, whereas beta-cell-specific insulin receptor knockout (betaIRKO) mice manifest severe progressive glucose intolerance due to loss of glucose-stimulated acute-phase insulin release. To explore the interaction between insulin resistance in muscle and altered insulin secretion, we created a double tissue-specific insulin receptor knockout in these tissues. Surprisingly, betaIRKO-MIRKO mice show an improvement rather than a deterioration of glucose tolerance when compared to betaIRKO mice. This is due to improved glucose-stimulated acute insulin release and redistribution of substrates with increased glucose uptake in adipose tissue and liver in vivo, without a significant decrease in muscle glucose uptake. Thus, insulin resistance in muscle leads to improved glucose-stimulated first-phase insulin secretion from beta-cells and shunting of substrates to nonmuscle tissues, collectively leading to improved glucose tolerance. These data suggest that muscle, either via changes in substrate availability or by acting as an endocrine tissue, communicates with and regulates insulin sensitivity in other tissues.
Fruman, Mauvais-Jarvis, Pollard, Yballe, Brazil, Bronson, Kahn, and Cantley. (2000) 2000. “Hypoglycaemia, Liver Necrosis and Perinatal Death in Mice Lacking All Isoforms of Phosphoinositide 3-Kinase P85 Alpha”. Nat Genet 26 (3): 379-82. https://doi.org/10.1038/81715.
Phosphoinositide 3-kinases produce 3'-phosphorylated phosphoinositides that act as second messengers to recruit other signalling proteins to the membrane. Pi3ks are activated by many extracellular stimuli and have been implicated in a variety of cellular responses. The Pi3k gene family is complex and the physiological roles of different classes and isoforms are not clear. The gene Pik3r1 encodes three proteins (p85 alpha, p55 alpha and p50 alpha) that serve as regulatory subunits of class IA Pi3ks (ref. 2). Mice lacking only the p85 alpha isoform are viable but display hypoglycaemia and increased insulin sensitivity correlating with upregulation of the p55 alpha and p50 alpha variants. Here we report that loss of all protein products of Pik3r1 results in perinatal lethality. We observed, among other abnormalities, extensive hepatocyte necrosis and chylous ascites. We also noted enlarged skeletal muscle fibres, brown fat necrosis and calcification of cardiac tissue. In liver and muscle, loss of the major regulatory isoform caused a great decrease in expression and activity of class IA Pi3k catalytic subunits; nevertheless, homozygous mice still displayed hypoglycaemia, lower insulin levels and increased glucose tolerance. Our findings reveal that p55 alpha and/or p50 alpha are required for survival, but not for development of hypoglycaemia, in mice lacking p85 alpha.
Ristow, Pfister, Yee, Schubert, Michael, Zhang, Ueki, Michael, Lowell, and Kahn. 2000. “Frataxin Activates Mitochondrial Energy Conversion and Oxidative Phosphorylation”. Proc Natl Acad Sci U S A 97 (22): 12239-43. https://doi.org/10.1073/pnas.220403797.
Friedreich's ataxia (FA) is an autosomal recessive disease caused by decreased expression of the mitochondrial protein frataxin. The biological function of frataxin is unclear. The homologue of frataxin in yeast, YFH1, is required for cellular respiration and was suggested to regulate mitochondrial iron homeostasis. Patients suffering from FA exhibit decreased ATP production in skeletal muscle. We now demonstrate that overexpression of frataxin in mammalian cells causes a Ca(2+)-induced up-regulation of tricarboxylic acid cycle flux and respiration, which, in turn, leads to an increased mitochondrial membrane potential (delta psi(m)) and results in an elevated cellular ATP content. Thus, frataxin appears to be a key activator of mitochondrial energy conversion and oxidative phosphorylation.
Phosphoinositide (PI) 3-kinase is a key mediator of insulin-dependent metabolic actions, including stimulation of glucose transport and glycogen synthesis. The gene for the p85alpha regulatory subunit yields three splicing variants, p85alpha, AS53/p55alpha, and p50alpha. All three have (i) a C-terminal structure consisting of two Src homology 2 domains flanking the p110 catalytic subunit-binding domain and (ii) a unique N-terminal region of 304, 34, and 6 amino acids, respectively. To determine if these regulatory subunits differ in their effects on enzyme activity and signal transduction from insulin receptor substrate (IRS) proteins under physiological conditions, we expressed each regulatory subunit in fully differentiated L6 myotubes using adenovirus-mediated gene transfer with or without coexpression of the p110alpha catalytic subunit. PI 3-kinase activity associated with p50alpha was greater than that associated with p85alpha or AS53. Increasing the level of p85alpha or AS53, but not p50alpha, inhibited both phosphotyrosine-associated and p110-associated PI 3-kinase activities. Expression of a p85alpha mutant lacking the p110-binding site (Deltap85) also inhibited phosphotyrosine-associated PI 3-kinase activity but not p110-associated activity. Insulin stimulation of two kinases downstream from PI-3 kinase, Akt and p70 S6 kinase (p70(S6K)), was decreased in cells expressing p85alpha or AS53 but not in cells expressing p50alpha. Similar inhibition of PI 3-kinase, Akt, and p70(S6K) was observed, even when p110alpha was coexpressed with p85alpha or AS53. Expression of p110alpha alone dramatically increased glucose transport but decreased glycogen synthase activity. This effect was reduced when p110alpha was coexpressed with any of the three regulatory subunits. Thus, the three different isoforms of regulatory subunit can relay the signal from IRS proteins to the p110 catalytic subunit with different efficiencies. They also negatively modulate the PI 3-kinase catalytic activity but to different extents, dependent on the unique N-terminal structure of each isoform. These data also suggest the existence of a mechanism by which regulatory subunits modulate the PI 3-kinase-mediated signals, independent of the kinase activity, possibly through subcellular localization of the catalytic subunit or interaction with additional signaling molecules.
Brüning, Gautam, Burks, Gillette, Schubert, Orban, R. Klein, Krone, Müller-Wieland, and Kahn. 2000. “Role of Brain Insulin Receptor in Control of Body Weight and Reproduction”. Science 289 (5487): 2122-5.
Insulin receptors (IRs) and insulin signaling proteins are widely distributed throughout the central nervous system (CNS). To study the physiological role of insulin signaling in the brain, we created mice with a neuron-specific disruption of the IR gene (NIRKO mice). Inactivation of the IR had no impact on brain development or neuronal survival. However, female NIRKO mice showed increased food intake, and both male and female mice developed diet-sensitive obesity with increases in body fat and plasma leptin levels, mild insulin resistance, elevated plasma insulin levels, and hypertriglyceridemia. NIRKO mice also exhibited impaired spermatogenesis and ovarian follicle maturation because of hypothalamic dysregulation of luteinizing hormone. Thus, IR signaling in the CNS plays an important role in regulation of energy disposal, fuel metabolism, and reproduction.
Hebinck, Hardt, Schöls, Vorgerd, Briedigkeit, Kahn, and Ristow. (2000) 2000. “Heterozygous Expansion of the GAA Tract of the X25/Frataxin Gene Is Associated With Insulin Resistance in Humans”. Diabetes 49 (9): 1604-7.
Friedreich's ataxia (FA) is an autosomal recessive disease that has been attributed to a GAA triplet repeat expansion in the first intron of the X25/frataxin gene. Impaired glucose tolerance is present in up to 39% of FA patients, and clinically apparent diabetes is seen in approximately 18% of the affected individuals. Subjects carrying the X25/frataxin GAA repeat in a heterozygous state do not develop FA and, therefore, represent an ideal model to study the underlying metabolic defects that contribute to the diabetes associated with this disorder. In the present study, we have compared 11 first-degree relatives of FA patients (i.e., parents or heterozygous siblings of FA patients) with matched normal control subjects to study the parameters of glucose metabolism. An oral glucose tolerance test revealed diabetes in one of the heterozygous subjects who was excluded from further analyses. Using an octreotide-based quantification of insulin sensitivity, 8 of the remaining 10 study subjects showed pronounced insulin resistance, reflecting a significant difference from the control group (P = 0.001). In conclusion, a heterozygous expansion of the X25/frataxin GAA repeat in healthy individuals is associated with insulin resistance and might be considered a genetic co-factor in the pathogenesis of mitochondrial subtypes of diabetes.
Kriauciunas, Myers, and Kahn. (2000) 2000. “Cellular Compartmentalization in Insulin Action: Altered Signaling by a Lipid-Modified IRS-1”. Mol Cell Biol 20 (18): 6849-59.
While most receptor tyrosine kinases signal by recruiting SH2 proteins directly to phosphorylation sites on their plasma membrane receptor, the insulin receptor phosphorylates intermediary IRS proteins that are distributed between the cytoplasm and a state of loose association with intracellular membranes. To determine the importance of this distribution to IRS-1-mediated signaling, we constructed a prenylated, constitutively membrane-bound IRS-1 by adding the COOH-terminal 9 amino acids from p21(ras), including the CAAX motif, to IRS-1 (IRS-CAAX) and analyzed its function in 32D cells expressing the insulin receptor. IRS-CAAX migrated more slowly on sodium dodecyl sulfate-polyacrylamide gel electrophoresis than did IRS-1 and demonstrated increased levels of serine/threonine phosphorylation. Insulin-stimulated tyrosyl phosphorylation of IRS-CAAX was slightly decreased, while IRS-CAAX-mediated phosphatidylinositol 3'-kinase (PI3'-kinase) binding and activation were decreased by approximately 75% compared to those for wild-type IRS-1. Similarly, expression of IRS-CAAX desensitized insulin-stimulated [(3)H]thymidine incorporation into DNA by about an order of magnitude compared to IRS-1. By contrast, IRS-CAAX-expressing cells demonstrated increased signaling by mitogen-activated protein kinase, Akt, and p70(S6) kinase in response to insulin. Hence, tight association with the membrane increased IRS-1 serine phosphorylation and reduced coupling between the insulin receptor, PI3'-kinase, and proliferative signaling while enhancing other signaling pathways. Thus, the correct distribution of IRS-1 between the cytoplasm and membrane compartments is critical to the normal balance in the network of insulin signaling.